K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

\(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}=2\left(1+2^2+2^3+2^4\right)+...+2^{96}\left(1+2^2+2^3+2^4\right)=2.31+2^6.31+...+2^{96}.31=31\left(2+2^6+...+2^{96}\right)⋮31\)

Cảm ơn bạn/chị nhé ạ!!!Thankyou very much!!!

 

25 tháng 4 2020

1) Đặt \(A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{99}.3\)

Vì \(3⋮3\) nên \(2.3+2^3.3+...+2^{99}.3⋮3\)

hay \(A⋮3\)(đpcm)

2) Đặt \(B=3+3^2+3^3+...+3^{1998}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{1996}.13\)

\(=39+3^3.39+...+3^{1995}.39\)

Vì \(39⋮39\)nên \(39+3^3.39+...+3^{1995}.39⋮39\)

hay \(B⋮39\)(đpcm)

25 tháng 4 2020

a) 2+22+23+...+2100

=(2+22+23+24+25)+(26+27+28+29+210)+.....+(296+297+298+299+2100)

=2(1+2+22+23+24)+26(1+2+22+23+24)+....+296(1+2+22+23+24)

=2(1+2+4+8+16)+26(1+2+4+8+16)+....+296(1+2+4+8+16)

=2.31+26.31+....+296.31

=31(2+26+....+296)

=> đpcm

26 tháng 1 2017

\(M=2015+2015^2+...+2015^{100}\)

\(M=\left(2015+2015^2\right)+...+\left(2015^{99}+2015^{100}\right)\)

\(M=2015\left(1+2015\right)+...+2015^{99}\left(1+2015\right)\)

\(M=2015\cdot2016+...+2015^{99}\cdot2016\)

\(M=2016\left(2015+...+2015^{99}\right)⋮2016\)

26 tháng 1 2017

\(M=2015+2015^2+2015^3+.....+2015^{100}\)
\(=>M=\left(2015+2015^2\right)+\left(2015^3+2015^4\right)+.....+\left(2015^{99}+2015^{100}\right)\)
\(=>M=2015\left(1+2015\right)+2015^3\left(1+2015\right)+2015^{99}\left(1+2015\right)\)
\(=>M=2015.2016+2015^3.2016+.....+2015^{99}.2016\)
\(=>M=\left(2015+2015^3+...+2015^{99}\right).2016⋮2016\)

13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

2 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)

\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3

3 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)

\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)

\(S=7+2^3\cdot7+....+2^{98}\cdot7\)

\(S=7\left(1+2^3+...+2^{98}\right)\)

=> S chia 7 dư 0 hay S chia hết cho 7

16 tháng 10 2017

Bài 1:

Ta có:

\(\left\{{}\begin{matrix}3^{450}=\left(3^3\right)^{150}=27^{150}\\5^{300}=\left(5^2\right)^{150}=25^{150}\end{matrix}\right.\)

\(27>25\)

Nên \(27^{150}>25^{150}\)

Hay \(3^{450}>5^{300}\)

Vậy ...

Bài 2:

\(A=1+2+2^2+2^3+...+2^{2016}+2^{2017}\)

\(\Leftrightarrow2A=2+2^2+2^3+2^4+...+2^{2017}+2^{2018}\)

\(\Leftrightarrow2A-A=2^{2018}-1\)

\(\Leftrightarrow A=2^{2018}-1\)

Vậy \(A=2^{2018}-1\).

Chúc bạn học tốt!

16 tháng 10 2017

1.

Ta có:

3450 = 33 . 150 = (33)150 = 27150

5300 = 52 . 150 = (52)150 = 25150

Vì 27150 > 25150 nên 3450 > 5300

Vậy...

3 tháng 3 2017

Đây bạn

Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó :P
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.

3 tháng 3 2017

Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha hihiokthanghoavuibanh

2 tháng 10 2017

a) 1010 và 48 . 505

Ta có: 48.505 = 24.2.505 = 24.1005 = 24.(102)5 = 24.1010

\(\Rightarrow\)1010 < 24.1010

hay 1010 < 48.505

2 tháng 10 2017

b) 321 và 231

Ta có: 321 = 3.320 = 3.(32)10 = 3.910

231 = 2.230 = 2.(23)10 = 2.810

\(\Rightarrow\)3.910 > 2.810

(vì 3 > 2; 910 > 810)

hay 321 > 231

2 tháng 12 2018

An-250=mấy

2 tháng 12 2018

A = 250  + 251 + 252 + .... + 22017 + 22018

=> 2A = 251 + 252 + 253 + .... + 22018 + 22019

=> 2A - A = ( 251 + 252 + 253 + ... + 22018 + 22019 ) - ( 250 + 251 + ... + 22017 + 22018 )

=> A = 22019 - 250

29 tháng 10 2016

Ta có: \(A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(\Rightarrow A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(\Rightarrow A=2.7+2^4.7+...+2^{98}.7\)

\(\Rightarrow A=\left(2+2^4+...+2^{98}\right).7⋮7\)

\(\Rightarrow A⋮7\)

29 tháng 10 2016

cộng hay là gì