K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

Ta có: \(A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(\Rightarrow A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(\Rightarrow A=2.7+2^4.7+...+2^{98}.7\)

\(\Rightarrow A=\left(2+2^4+...+2^{98}\right).7⋮7\)

\(\Rightarrow A⋮7\)

29 tháng 10 2016

cộng hay là gì

 

Đặt A=1/22+1/32+...+1/1002.Ta có:

A>1/2.3+1/3.4+...+1/100.101=1/2-1/101=99/202

A< 1/1.2+1/2.3+...+1/99.100=1-1/100=99/100

8 tháng 7 2016

thanks nhìu nhaleuleu

15 tháng 7 2017

Bài 1 là tính hợp lí

2 tháng 2 2018

mình giúp bài tìm x nhé

(x - 1)^5 = (x - 1)^4

(x - 1)^5 : (x - 1)^4 = 1

x - 1=1

x = 2

thế nhé. Good luck. ^_^

14 tháng 6 2016

A=\(\frac{n\left(n+1\right)}{2}\)

F=\(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

14 tháng 6 2016

Từ 1-> n có:  (n-1)+1=n (số hạng)

=>\(A=1+2+3+...+n=\frac{\left(n+1\right).n}{2}\)
 

16 tháng 4 2017

\(\left(x-y^2+z\right)^2\ge0\)

\(\left(y-2\right)^2\ge0\)

\(\left(z-3\right)^2\ge0\)

\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)

\(\Rightarrow\) \(\left(x-y^2+z\right)^2=0;\text{ }\left(y-2\right)^2=0;\text{ }\left(z-3\right)^2=0\)

+\(\text{ }\left(y-2\right)^2=0\)

\(\Rightarrow\text{ }y-2=0\)

\(y=0+2\)

\(y=2\)

+ \(\left(z-3\right)^2=0\)

\(\Rightarrow z-3=0\)

\(z=0+3\)

\(z=3\)

+ \(\left(x-y^2+z\right)^2=0\)

\(\Rightarrow x-y^2+z=0\)

\(x-2^2+3=0\)

\(x-4=0-3\)

\(x-4=-3\)

\(x=-3+4\)

\(x=1\)

Vậy: \(x=1;\text{ }y=2;\text{ }z=3\)

10 tháng 8 2016

Mình chỉ biết làm câu b thôi. Xl nhé!

  b/ \(2^x=32^5.64^6\)

\(\Rightarrow2^x=\left(2^5\right)^5.\left(2^6\right)^6\)

\(\Rightarrow2^x=2^{25}.2^{36}\)

\(\Rightarrow2^x=2^{25+36}\)

\(\Rightarrow2^x=2^{61}\)

\(\Rightarrow x=61\)

   Vậy \(x=61\)

4 tháng 10 2016

Đề bài là gì vậy 

4 tháng 10 2016

chuẩn

26 tháng 1 2017

\(M=2015+2015^2+...+2015^{100}\)

\(M=\left(2015+2015^2\right)+...+\left(2015^{99}+2015^{100}\right)\)

\(M=2015\left(1+2015\right)+...+2015^{99}\left(1+2015\right)\)

\(M=2015\cdot2016+...+2015^{99}\cdot2016\)

\(M=2016\left(2015+...+2015^{99}\right)⋮2016\)

26 tháng 1 2017

\(M=2015+2015^2+2015^3+.....+2015^{100}\)
\(=>M=\left(2015+2015^2\right)+\left(2015^3+2015^4\right)+.....+\left(2015^{99}+2015^{100}\right)\)
\(=>M=2015\left(1+2015\right)+2015^3\left(1+2015\right)+2015^{99}\left(1+2015\right)\)
\(=>M=2015.2016+2015^3.2016+.....+2015^{99}.2016\)
\(=>M=\left(2015+2015^3+...+2015^{99}\right).2016⋮2016\)

3 tháng 3 2017

Đây bạn

Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó :P
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.

3 tháng 3 2017

Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha hihiokthanghoavuibanh

7 tháng 8 2016

b. 2^x=2^25.2^36

2^x=2^61

x=61

 

10 tháng 8 2016

Mình chỉ biết làm câu b thôi. Xl nhé!

  b/ \(2^x=32^5.64^6\)

\(\Rightarrow2^x=\left(2^5\right)^5.\left(2^6\right)^6\)

\(\Rightarrow2^x=2^{25}.2^{36}\)

\(\Rightarrow2^x=2^{25+36}\)

\(\Rightarrow2^x=2^{61}\)

\(\Rightarrow x=61\)

   Vậy \(x=61\)