K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

25 tháng 4 2020

1) Đặt \(A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{99}.3\)

Vì \(3⋮3\) nên \(2.3+2^3.3+...+2^{99}.3⋮3\)

hay \(A⋮3\)(đpcm)

2) Đặt \(B=3+3^2+3^3+...+3^{1998}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{1996}.13\)

\(=39+3^3.39+...+3^{1995}.39\)

Vì \(39⋮39\)nên \(39+3^3.39+...+3^{1995}.39⋮39\)

hay \(B⋮39\)(đpcm)

25 tháng 4 2020

a) 2+22+23+...+2100

=(2+22+23+24+25)+(26+27+28+29+210)+.....+(296+297+298+299+2100)

=2(1+2+22+23+24)+26(1+2+22+23+24)+....+296(1+2+22+23+24)

=2(1+2+4+8+16)+26(1+2+4+8+16)+....+296(1+2+4+8+16)

=2.31+26.31+....+296.31

=31(2+26+....+296)

=> đpcm

17 tháng 10 2018

\(A=\left(2+2^2+2^3+2^4+2^5\right)+\)\(\left(2^6+2^7+2^8+2^9+2^{10}\right)+....\left(2^{86}+2^{87}+2^{88}+2^{89}+2^{90}\right)\)

\(A=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)\(+....+2^{86}.\left(1+2+2^2+2^3+2^4\right)\)

\(A=2.21+2^6.21+...+2^{86}.21\)

\(A=21.\left(2+2^6+...+2^{86}\right)⋮21\)

2 tháng 5 2015

dễ ợt

s=2010(1+20100+2010^3(1+2010)+............+2010^2009(1+2010)

s=2010.2011+2010^3.2011+.........+2010^2009.2011

s=2011(2010+2010^3+.......+2010^2009) chia hết cho 2011

2 tháng 5 2015

 \(S=\left(2010+2010^2\right)+\left(2010^3+2010^4\right)+...+\left(2010^{2009}+2010^{2010}\right)\)

\(S=2010\left(2010+1\right)+2010^3\left(2010+1\right)+...+2010^{2009}\left(2010+1\right)\)

 \(S=2011.\left(2010+2010^3+2010^5+...+2010^{2009}\right)\) chia hết cho 2011

10 tháng 1 2016

ta có: S=( 31+32+33+34+35+36)+...+32016

S= 31(1+3+32+33+34+35) +...+ 32011(1+3+32+33+34+35)

S= 31.364+...+ 32011.364

S= 364. ( 31+...+32011 )

S= 26.14.(31+...+32011) chia hết cho 26

vậy S chia hết cho 26

10 tháng 1 2016

3+32+33+...............+32016

=(3+32+33+34+35+36)+.............+(32011+32012+32013+32014+32015+32016)

=3.(1+3+32+33+34+35)+...........+32011.(1+3+32+33+34+35)

=3.364+.................+32011.364

=3.14.26+...............+32011.14.26 chia hết cho 26

=>đpcm

tích mình với

ai tích mình 

mình tích lại

thanks nhiều

28 tháng 7 2018

k mk đi mk sẽ k lại

14 tháng 2 2016

S=(1-3+32-33)+...+(396-397+398-399)

=-20+...+396(1-3+32-33)

=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20

b) 3S=3-32+33-34+..+399-3100

3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)

4S=1-3100

S=(1-3100):4

Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1

14 tháng 2 2016

bài toán khó cực

14 tháng 11 2015

bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3

=(...6).(...8)=..8

2003^2004=(2003^4)^501 = ...1

2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2

b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5

c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10 

nếu đúng nhớ tick cho mình nhé

2 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)

\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3

3 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)

\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)

\(S=7+2^3\cdot7+....+2^{98}\cdot7\)

\(S=7\left(1+2^3+...+2^{98}\right)\)

=> S chia 7 dư 0 hay S chia hết cho 7