Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\2x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)
Nghiệm dương nhỏ nhất là \(x=\dfrac{\pi}{4}\approx0.79\)
Đáp án C
\(\left\{{}\begin{matrix}SO\perp BC\\SO\perp CA\end{matrix}\right.\) \(\Rightarrow SO\perp\left(ABC\right)\)
\(AA'=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều) \(\Rightarrow AO=\dfrac{2}{3}AA'=\dfrac{a\sqrt{3}}{3}\)
\(\Rightarrow M\) nằm trên đoạn thẳng OA'
Qua M kẻ đường thẳng song song BC cắt AB và AC lần lượt tại D và E
Trong mp (SAA'), qua M kẻ đường thẳng song song SO cắt SA' tại F
Trong mp (SBC), qua F kẻ đường thẳng song song BC cắt SB và SC lần lượt tại G và H
\(\Rightarrow\) Hình thang DEHG là thiết diện của (P) và chóp
\(FM||SO\Rightarrow FM\perp\left(ABC\right)\Rightarrow FM\perp ED\)
Áp dụng định lý Talet cho tam giác ABC:
\(\dfrac{DE}{BC}=\dfrac{AM}{AA'}\Rightarrow DE=\dfrac{BC.AM}{AA'}=\dfrac{a.x}{\dfrac{a\sqrt{3}}{2}}=\dfrac{2x\sqrt{3}}{3}\)
Talet tam giác SOA':
\(\dfrac{FM}{SO}=\dfrac{MA'}{OA'}\Rightarrow FM=\dfrac{SO.MA'}{OA'}=\dfrac{2a.\left(\dfrac{a\sqrt{3}}{2}-x\right)}{\dfrac{a\sqrt{3}}{6}}=6a-4\sqrt{3}x\)
Talet tam giác SBC:
\(\dfrac{GH}{BC}=\dfrac{SF}{SA'}=1-\dfrac{FA'}{SA'}=1-\dfrac{FM}{SO}=1-\dfrac{6a-4\sqrt{3}x}{2a}=\dfrac{2\sqrt{3}x-2a}{a}\)
\(\Rightarrow GH=2\sqrt{3}x-2a\)
\(S_{DEHG}=\dfrac{1}{2}\left(DE+GH\right).FM=\dfrac{1}{2}\left(\dfrac{2x\sqrt{3}}{3}+2\sqrt{3}x-2a\right)\left(6a-4\sqrt{3}x\right)\)
\(=\dfrac{1}{3}\left(4\sqrt{3}x-3a\right)\left(6a-4\sqrt{3}x\right)\le\dfrac{1}{12}\left(4\sqrt{3}x-3a+6a-4\sqrt{3}x\right)^2=\dfrac{9a^2}{12}\)
Dấu "=" xảy ra khi \(4\sqrt{3}x-3a=6a-4\sqrt{3}x\Leftrightarrow x=\dfrac{9a}{8\sqrt{3}}=\dfrac{3a\sqrt{3}}{8}\)
Do M là trung điểm SA, N là trung điểm AC
\(\Rightarrow\) MN là đường trung bình tam giác SAC
\(\Rightarrow MN||SC\)
Mà \(SC\in\left(SCD\right)\Rightarrow MN||\left(SCD\right)\)
\(=\lim\limits_{x->2}\dfrac{3x-2-4}{\sqrt{3x-2}+2}\cdot\dfrac{1}{-2\left(x-2\right)}\)
\(=\lim\limits_{x->2}\dfrac{-3}{2\left(\sqrt{3x-2}+2\right)}=\dfrac{-3}{2\sqrt{3\cdot2-2}+4}=\dfrac{-3}{8}\)
a.
\(90^0< a< 180^0\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\dfrac{2\sqrt{2}}{3}\)
\(tana=\dfrac{sina}{cosa}=-\dfrac{\sqrt{2}}{4}\)
b.
\(0< a< 90^0\Rightarrow cosa>0\)
\(\Rightarrow cosa=\sqrt{1-sin^2a}=\dfrac{4}{5}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{3}{4}\)
\(cota=\dfrac{1}{tana}=\dfrac{4}{3}\)
c.
\(A=\dfrac{\dfrac{sina}{cosa}+\dfrac{3cosa}{sina}}{\dfrac{sina}{cosa}+\dfrac{cosa}{sina}}=\dfrac{sin^2a+3cos^2a}{sin^2a+cos^2a}=1+2cos^2a=\dfrac{17}{8}\)
d.
\(A=\dfrac{\dfrac{cosa}{sina}+\dfrac{3sina}{cosa}}{\dfrac{2cosa}{sina}+\dfrac{sina}{cosa}}=\dfrac{cos^2a+3sin^2a}{2cos^2a+sin^2a}=\dfrac{cos^2a+3\left(1-cos^2a\right)}{2cos^2a+\left(1-cos^2a\right)}\)
\(=\dfrac{3-2cos^2a}{1+cos^2a}=\dfrac{19}{13}\)
11.
\(sin^2x-4sinx.cosx+3cos^2x=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-3cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-3cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=3cosx\end{matrix}\right.\)
Với \(cosx=0\Rightarrow\) pt vô nghiệm
Với \(cosx\ne0\)
\(pt\Leftrightarrow\left[{}\begin{matrix}tanx=0\\tanx=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arctan3+k\pi\end{matrix}\right.\)
Trong mp (ABCD), nối AN kéo dài cắt BC kéo dài tại E
⇒E∈(SBC)⇒E∈(SBC)
Do AD song song BE, áp dụng Talet:
ANNE=NDNC=1⇒AN=NE⇒ANNE=NDNC=1⇒AN=NE⇒ N là trung điểm AE
⇒MN⇒MN là đường trung bình tam giác SAE
⇒MN//SE⇒MN//(SBC)
3.
a. Mỗi vị trí có 8 cách chọn, do đó có thể lập \(3^8\) chữ số
b. Số số thỏa mãn: \(8.7.6=...\)
c. Chữ số hàng đơn vị phải là số chẵn \(\Rightarrow\) có 4 cách chọn
Hai chữ số còn lại có \(7.6\) cách
Tổng: \(4.7.6=...\)
d. Chia X làm 3 tập: \(A=\left\{3;6\right\}\) gồm các chữ số chia hết cho 3
\(B=\left\{1;4;7\right\}\) gồm các số chia 3 dư 1
\(C=\left\{2;5;8\right\}\) gồm các số chia 3 dư 2
Số được lập thỏa mãn khi các TH sau xảy ra: (3 số được chọn nằm cùng 1 tập), (3 số được chọn nằm ở 3 tập khác nhau)
\(\Rightarrow3!+3!+3!.C_2^1.C_3^1.C_3^1=...\)
4.
Gọi chữ số cần lập là \(\overline{abc}\)
a.
a có 6 cách chọn, b và c mỗi vị trí có 7 cách chọn
\(\Rightarrow6.7.7=...\) số
b.
a có 6 cách chọn (khác 0), b có 6 cách chọn (khác a), c có 5 cách chọn (khác a và b)
\(\Rightarrow6.6.5=...\) số
c.
- Nếu \(c=0\Rightarrow\) a có 6 cách chọn, b có 5 cách chọn \(\Rightarrow6.5\) số
- Nếu \(c\ne0\Rightarrow c\) có 3 cách chọn (2;4;6), a có 5 cách chọn (khác c và 0), b có 5 cách chọn (khác a và c) \(\Rightarrow3.5.5\) số
Tổng cộng: \(6.5+3.5.5=...\) số