Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(DK:x\ge2\)
PT
\(\Leftrightarrow\left(2+x\right)\sqrt{x-2}-\left(x+2\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x+2\right)\sqrt{x-2}\left(1-\sqrt{x-2}\right)=0\)
Cho này thì ok ròi nhé
2.
\(DK:x\le\frac{5}{2}\)
Xet \(x\in\left[0;\frac{5}{2}\right]\)
PT
\(\Leftrightarrow x^2-4x=5-2x\)
\(\Leftrightarrow x^2-2x-5=0\)
Ta co:
\(\Delta^`=\left(-1\right)^2-1.\left(-5\right)=6>0\)
\(\Rightarrow\hept{\begin{cases}x_1=1+\sqrt{6}\left(l\right)\\x_2=1-\sqrt{6}\left(l\right)\end{cases}}\)
Xet \(x\le0\)
PT
\(4x-x^2=5-2x\)
\(\Leftrightarrow x^2-6x+5=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=5\left(l\right)\end{cases}}\)
Vay PT vo nghiem
`sin3x sinx+sin(x-π/3) cos (x-π/6)=0`
`<=> 1/2 (cos2x - cos4x) + 1/2(-sin π/6 + sin (2x-π/2)=0`
`<=> cos2x-cos4x-1/2+ sin(2x-π/2)=0`
`<=>cos2x-cos4x-1/2+ sin2x .cos π/2 - cos2x. sinπ/2=0`
`<=> cos2x - cos4x - cos2x = 1/2`
`<=> cos4x = cos(2π)/3`
`<=>` \(\left[{}\begin{matrix}4x=\dfrac{2\text{π}}{3}+k2\text{π}\\4x=\dfrac{-2\text{π}}{3}+k2\text{π}\end{matrix}\right.\)
`<=>` \(\left[{}\begin{matrix}x=\dfrac{\text{π}}{6}+k\dfrac{\text{π}}{2}\\x=-\dfrac{\text{π}}{6}+k\dfrac{\text{π}}{2}\end{matrix}\right.\)
ĐKXĐ: ...
\(\Leftrightarrow\sqrt{x-1}+\sqrt{x+3}+2x+2+2\sqrt{\left(x-1\right)\left(x+3\right)}-6=0\)
Đặt \(\sqrt{x-1}+\sqrt{x+3}=t>0\)
\(\Rightarrow t^2=2x+2+2\sqrt{\left(x-1\right)\left(x+3\right)}\)
Phương trình trở thành:
\(t+t^2-6=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-3\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-1}+\sqrt{x+3}=2\)
\(\Leftrightarrow\sqrt{x-1}+\sqrt{x+3}-2=0\)
\(\Leftrightarrow\sqrt{x-1}+\dfrac{x-1}{\sqrt{x+3}+2}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(1+\dfrac{\sqrt{x-1}}{\sqrt{x+3}+2}\right)=0\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x=1\)
Em cảm ơn thầy ạ