Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
Gọi chiều rộng là x
=>Chiều dài là 4x
=>Diện tích là 4x^2
Theo đề, ta có: (x-2)*8x=4x^2+20
=>8x^2-16x-4x^2-20=0
=>x^2-4x-5=0
=>x=5
=>S=4*5^2=100m2
Số tiền của mảnh vườn là:
100*20000000=2000000000(đồng)
Với m = 3 thì (d): y = 8x - 7
PTHĐGĐ của (P) và (d): \(x^2-8x+7=0\)
Có: \(a+b+c=1+\left(-8\right)+7=0\)
=> PT có 2 nghiệm phân biệt \(x_1=1;x_2=7\)
\(x_1=1\Rightarrow y_1=x_1^2=1^2=1\\ x_2=7\Rightarrow y_2=x_2^2=7^2=49\)
Tọa độ giao điểm của (P) và (d) là: \(\left(1;1\right);\left(7;49\right)\)
b)
PTHĐGĐ của (P) và (d) là:
\(x^2-2\left(m+1\right)x+3m-2=0\)
\(\Delta'=\left(m+1\right)^2-\left(3m-2\right)=m^2+2m+1-3m+2=m^2-m+3\\ =m^2-m+\dfrac{1}{4}+\dfrac{11}{4}=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall m\)
Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=3m-2\end{matrix}\right.\)
Theo đề: \(x_1^2+x_2^2=20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow\left(2m+2\right)^2-2\left(3m-2\right)=20\)
\(\Leftrightarrow4m^2+8m+4-6m+4=20\\ \Leftrightarrow4m^2+2m+8-20=0\\ \Leftrightarrow4m^2+2m-12=0\\ \Leftrightarrow2m^2+m-6=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=-2\left(tm\right)\\m=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)
Gọi tọa độ của \(\left(P\right),\left(d\right)\) là \(A\left(x_A;y_A\right),B\left(x_B;y_B\right)\)
\(a,m=3\)
\(\Rightarrow x^2=2\left(3+1\right)x-3.3+2\)
\(\Rightarrow x^2-8x+7=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Thay \(x=7\) vào \(\left(P\right):y=x^2\Rightarrow y=7^2=49\)
Khi m = 3 thì đường thẳng \(\left(d\right):y=2\left(3+1\right)x-3.3+2=8x-7\)
Thay \(x=1\) vào \(\left(d\right):y=8x-7=8.1-7=1\)
Vậy \(A\left(7;49\right),B\left(1;1\right)\)
\(\Rightarrow y=\left(2m+2\right)x-3m+2\)
\(b,\) Vì \(\left(P\right)\) và \(\left(d\right)\) luôn cắt nhau tại 2 điểm pb A,B \(\forall m\) nên :
\(x^2=2\left(m+1\right)x-3m+2\Leftrightarrow x^2-2\left(m+1\right)x+3m-2\)
Theo Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+2\\x_1x_2=\dfrac{c}{a}=3m-2\end{matrix}\right.\)
Ta có : \(x_1^2+x_2^2=20\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\)
\(\Leftrightarrow\left(2m+2\right)^2-2\left(3m-2\right)=20\)
\(\Leftrightarrow4m^2+8m+4-6m+4-20=0\)
\(\Leftrightarrow4m^2+2m-12=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m=-2\end{matrix}\right.\)
Vậy \(m=\dfrac{3}{2},m=-2\) thì thỏa mãn đề bài.
\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)
\(\Leftrightarrow-n^3+n⋮n^3+1\)
\(\Leftrightarrow n=1\)
Bạn nên chịu khó gõ đề ra khả năng được giúp sẽ cao hơn.
Câu h của em đây nhé
h, ( 1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1 - \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))
= \(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3-\sqrt{3}}{\sqrt{3}+1}\)
= \(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)
= \(\dfrac{-4}{2}\)
= -2
a: BC=10cm
AH=4,8cm
b: Xét (A;AH) có
BC⊥AH tại H
nen BC là tiếp tuyến của (A;AH)
Gọi \(x\left(h\right)\) lần lượt là thời gian dự định đi từ Huế đến Hội An của hai bạn Lisa và Jisoo và \(y\left(km/h\right)\) là vận tốc dự định \(\left(x,y>0\right)\)
\(45p=0,75h\)
\(30p=0,5h\)
Nếu Lisa giảm vận tốc 10 km/h thì thời gian để đến Hội An tăng 45 phút : \(\left(y-10\right)\left(x+0,75\right)=xy\)
\(\Leftrightarrow xy+0,75y-10x-7,5=xy\)
\(\Leftrightarrow-10x+0,75y=7,5\left(1\right)\)
Nếu Lisa tăng vận tốc 10 km/h thì thời gian giảm 30 phút :
\(\left(y+10\right)\left(x-0,5\right)=xy\)
\(\Leftrightarrow xy-0,5y+10x-5=xy\)
\(\Leftrightarrow10x-0,5y=5\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) ta có hệ pt : \(\left\{{}\begin{matrix}-10x+0,75y=7,5\\10x-0,5y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=50\end{matrix}\right.\) \(\left(tmdk\right)\)
Vậy thời gian dự định đi từ Huế đến Hội An của hai bạn Lisa và Jisoo là \(3h\)
Anh nhìn đề bé quá không rõ mờ nhoè nữa em
Gọi vận tốc của xe máy là x(km/h) với x>0
Vận tốc của ô tô là: \(x+20\) (km/h)
Quãng đường xe máy đi được sau 1h: \(x\) (km)
Quãng đường còn lại: \(160-x\) (km)
Tổng vận tốc 2 xe: \(x+x+20=2x+20\) (km/h)
Thời gian xe ô tô đi từ B đến C: \(\dfrac{72}{x+20}\)
Do hai xe đi ngược chiều và gặp nhau tại C nên thời gian từ khi ô tô xuất phát đến khi gặp nhau là: \(\dfrac{160-x}{2x+20}\)
Cả 2 khoảng thời gian nói trên đều là thời gian ô tô đi từ B đến C nên ta có pt:
\(\dfrac{72}{x+20}=\dfrac{160-x}{2x+20}\)
\(\Rightarrow72\left(2x+20\right)=\left(160-x\right)\left(x+20\right)\)
\(\Leftrightarrow x^2+4x-1760=0\Rightarrow\left[{}\begin{matrix}x=40\\x=-44\left(loại\right)\end{matrix}\right.\)
Vậy vận tốc của xe máy là 40 km/h, vận tốc ô tô là 60 km/h
Chu vi đáy của viên phấn là \(3,14cm\)
Ta có : \(C=R.2.3,14=R.6,28\Rightarrow R=\dfrac{C}{6,28}=\dfrac{3,14}{6,28}=0,5\left(cm\right)\)
Thể tích của 1 viên phấn là :
\(V=3,14.R^2.h=3,14.0,5^2.12=9,42\left(cm^3\right)\)
Thể tích của 20 viên phấn là : \(9,42.20=188,4\left(cm^3\right)\)
Phần không gian bên trong hộp là :
\(200-188,4=11,6\left(cm^3\right)\)
a) 2y + 3x = -4 (1)
x - y = 7 (2)
(2) ⇔ x = y + 7 thế vào (1) ta được:
2y + 3(y + 7) = -4
⇔ 2y + 3y + 21 = -4
⇔ 5y = -4 - 21
⇔ 5y = -25
⇔ y = -5
Thế y = -5 vào (2) ta được:
x - (-5) = 7
⇔ x + 5 = 7
⇔ x = 2
Vậy S = {(2; -5)}
b) ĐKXĐ: m ≠ 1/2
Thay tọa độ điểm A(-1; 3) vào (d) ta được:
(2m - 1).(-1) + m = 3
⇔ -2m + 1 + m = 3
⇔ -m = 3 - 1
⇔ -m = 2
⇔ m = -2 (nhận)
Vậy m = -2 thì (d) đi qua A(-1; 3)
Sao mình không gõ CT cho dễ nhìn ạ?