K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

\(8,=\dfrac{13}{5}\left(\dfrac{3}{7}+\dfrac{4}{7}\right)-\dfrac{3}{5}=\dfrac{13}{5}-\dfrac{3}{5}=\dfrac{4}{5}\\ 9,=-\dfrac{5}{7}\left(\dfrac{31}{33}+\dfrac{2}{33}\right)+\dfrac{22}{17}=-\dfrac{5}{7}+\dfrac{22}{17}=\dfrac{69}{119}\\ 10,=-\dfrac{2}{15}\cdot5+\dfrac{2}{15}-\dfrac{4}{3}\cdot3=-\dfrac{2}{3}+\dfrac{2}{15}-4=-\dfrac{68}{15}\\ 11,=\dfrac{17}{3}\left(1-\dfrac{9}{17}+1-\dfrac{10}{17}\right)+\dfrac{12-25}{13}=\dfrac{17}{3}\cdot\left(2-1\right)-\dfrac{13}{13}=\dfrac{17}{3}-1=\dfrac{14}{3}\)

31 tháng 10 2021

11: \(=\dfrac{-25}{13}+\dfrac{8}{17}\cdot\dfrac{17}{3}+\dfrac{7}{17}\cdot\dfrac{17}{3}+\dfrac{12}{13}\)

\(=-1+\dfrac{8}{3}+\dfrac{7}{3}\)

=-1+5

=4

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE⊥BC

14 tháng 4 2021

Gọi gốc là điểm A, chỗ gãy là B, ngọn đã gãy là điểm C

Xét tam giác ABC vuông tại A có: AB = 6m, BC = 16m - 6m = 10m

=> AB2 + AC2 = BC(Định lý Py-ta-go)

Thay: 6+ AC2 = 102

         36 + AC= 100

                AC2 = 100 - 36 = 64

                AC = 8 (m)

Vậy khoảng cách từ gốc đến ngọn cây bị gãy là 8 mét

Nếu đúng hãy K cho mình nha

Học tốt nhé

8 tháng 1

\(\widehat{XAB}\) + \(\widehat{ABZ}\) = 1300 + 500 = 1800

Vì góc XAB và góc ABZ là hai góc trong cùng phía nên 

Ax // BZ

BZ // Cy ⇔ \(x\) + \(\widehat{yCB}\)  =1800

             ⇒ \(x\)              = 1800 - 1450 = 350

14 tháng 11 2021

Tỉ lệ \(x=\dfrac{y}{-5}\)

x             -4                 -1                2                   3

y             20                 5               -10               -15

15 tháng 10 2021

Bài 2: 

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{45}{9}=5\)

Do đó: a=10; b=15;c=20

17 tháng 12 2021

ai giúp mình đi mà 

18 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{\dfrac{1}{8}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{10}}=\dfrac{a+b+c}{\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}}=\dfrac{121}{\dfrac{121}{360}}=360\)

Do đó: a=45; b=40; c=36

7 tháng 5 2022

1)
- Phần hệ số: -5
- Phần biến: x3y

2)

- Để △ABC và △DEF bằng nhau thì cần thêm điều kiện BC=EF => △ABC = △DEF (cgc)
3)

a.
- Dấu hiệu ở đây là điểm kiểm tra môn Toán một tiết của mỗi học sinh lớp 7A.
-Mo=7
b.
  x ̅= \(\dfrac{5.1+6.3+7.6+8.4+9.4+10.2}{20}=7.65\) 
                                                                ≈ 7.7 (điểm)

4)
a. A= 5x2y - 6xy - 2x2y + 6xy - 1
A= (5x2y - 2x2y) + (- 6xy + 6xy) -1
A= 3x2y -1
b. Thay x=2; y=-1 vào đa thức A có:
A = 3. 22. (-1) -1

A = 3. 4. (-1) -1
A= -12 - 1 = -13
Vậy giá trị của A tại x=2; y= -1 là -13

7 tháng 5 2022

5) A(x) + B(x)=(3x3- 5x2 - 2x + 13)+(-2x3 + 3x2 + 2x - 5)

= (3x3 -2x3) + (- 5x2 + 3x2) + (- 2x + 2x) + (13 – 5)

= x^3 – 2x^2 + 8

6)

Cho 3x-12=0

        3x = 0 + 12 = 12

        x = 12 : 3
        x = 6
Vậy nghiệm của đa thức 3x – 12 = 6
7)

a. Trong △PRK, PK < PR
=> gK > gR (quan hệ giữa cạnh và góc đối diện)
b. Áp dụng định lý Py-ta-go vào △PRK có:
KR2 = PK2+ PR2
= 122 + 162
= 144 + 256 = 400
=> KR= 20 cm
8.
a.
Xét △OAC vuông tại A và △OBC vuông tại B có:
OC chung
gOAC = gOBC
=> △OAC = △OBC (ch-gn)
b.
gOAC = gOBC
=> OC là đường phân giác
=> CB = CA (tính chất tia phân giác của một góc)
Vì △OAC = △OBC nên OA = OB (2 cạnh tương ứng)
=> △OAB cân tại A
Ta có:
CB = CA => C ∈ đường trung trực của AB (1)
OA = OB => O ∈ đường trung trực của AB (2)
Từ (1) và (2) => OC là đường trung trực của AB.
9)
a. Xét △AHC và △MHC vuông tại H có:
HC chung
gACH=gMCH (HC là đường phân giác)
=> △AHC =△MHC (cgv-gn)
=> MC = AC (2 cạnh tương ứng)
=> △AMC cân tại C
b. Cho OM ⊥ AB tại O, MI ⊥ AC tại I
Xét △AMI vuông tại I và △MAK vuông tại K có:
AM cạnh chung
gMAI = AMK (tg MAC cân)
=> △AMI = △MAK (cgv-gn)
Ta thấy: \(\widehat{I}=\widehat{A}=\widehat{M}=\widehat{K}=90\)  độ
=> AIMO là hình chữ nhật
=> OM = AI; OA = MI
Xét △OMA và △IAM có:
AM chung
OM = AI (cmt)
OA = MI (cmt)
=>△OMA =△IAM (ccc)
=>△OMA =△IAM = tg KMA
=> g OAM = g KAM (2 góc tương ứng)
=> AM hay AH là đường phân giác g OAK
Mặt khác: AH ⊥ EN => AH là đường cao △ENA
AH là đường cao đồng thời là đường phân giác => △ENA cân
=> AH cũng là đường trung trực
Do đó: EH = HN nên H là trung điểm EN