Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thế này hả bạn: \(2sin\frac{5x}{2}.sin\frac{x}{2}-mcosx+1=0\)
\(\Leftrightarrow4cos^3x-3cosx-\left(2cos^2x-1\right)+m.cosx-1=0\)
\(\Leftrightarrow4cos^3x-2cos^2x+\left(m-3\right)cosx=0\)
\(\Leftrightarrow cosx\left(4cos^2x-2cosx+m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(1\right)\\4cos^2x-2cosx+m-3=0\left(2\right)\end{matrix}\right.\)
Xét (1) \(\Rightarrow x=\frac{\pi}{2}+k\pi\) không có nghiệm nào trên khoảng đã cho
\(\Rightarrow\) (2) phải có 7 nghiệm trên khoảng đã cho
Mà (2) là pt bậc 2 nên có tối đa 2 nghiệm cosx, ứng với mỗi giá trị cosx cũng có tối đa 2 nghiệm x thuộc khoảng đã cho
\(\Rightarrow\) (2) có tối đa 4 nghiệm
Không tồn tại m thỏa mãn yêu cầu
Chọn A.
y' = (m + 1)cosx – msinx – ( m + 2)
Phương trình y’ = 0 ⇔ (m + 1)cosx – msinx = (m + 2)
Điều kiện phương trình có nghiệm là a2 + b2 ≥ c2
⇔ (m + 1)2 + m2 ≥ (m + 2)2 ⇔ m2 – 2m – 3 ≥ 0
\(y'=\left(m+1\right)cosx-msinx-\left(m+2\right)\)
\(y'=0\Rightarrow\left(m+1\right)cosx-msinx=m+2\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt đã cho có nghiệm khi:
\(\left(m+1\right)^2+m^2\ge\left(m+2\right)^2\)
\(\Leftrightarrow m^2-2m-3\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-1\end{matrix}\right.\)
huhuh giúp mk vs mn ơi