Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo bài số 2:
Câu hỏi của maianh nguyễn - Toán lớp 11 | Học trực tuyến
\(\Leftrightarrow\left(cosx+1\right)\left(cos2x-m.cosx\right)=m\left(1-cos^2x\right)\)
\(\Leftrightarrow\left(cosx+1\right)\left(cos2x-m.cosx\right)=m\left(1+cosx\right)\left(1-cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(1\right)\\cos2x=m\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x=\pi+k2\pi\) ko có nghiệm trên đoạn đã cho
\(\Rightarrow\) (2) có 2 nghiệm trên đoạn đã cho
\(x\in\left[0;\frac{2\pi}{3}\right]\Rightarrow2x\in\left[0;\frac{4\pi}{3}\right]\)
Từ đường tròn lượng giác, ta thấy để pt có 2 nghiệm khi và chỉ khi \(-1< m\le-\frac{1}{2}\)
b/
\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)
\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)
\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)
\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)
\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)
\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)
Bạn tự cộng lại
c/
\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)
\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)
\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)
\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)
Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho
Mà \(-1< cosx< 0\Rightarrow-1< m< 0\)
\(\Leftrightarrow4cos^3x-3cosx-\left(2cos^2x-1\right)+m.cosx-1=0\)
\(\Leftrightarrow4cos^3x-2cos^2x+\left(m-3\right)cosx=0\)
\(\Leftrightarrow cosx\left(4cos^2x-2cosx+m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\left(1\right)\\4cos^2x-2cosx+m-3=0\left(2\right)\end{matrix}\right.\)
Xét (1) \(\Rightarrow x=\frac{\pi}{2}+k\pi\) không có nghiệm nào trên khoảng đã cho
\(\Rightarrow\) (2) phải có 7 nghiệm trên khoảng đã cho
Mà (2) là pt bậc 2 nên có tối đa 2 nghiệm cosx, ứng với mỗi giá trị cosx cũng có tối đa 2 nghiệm x thuộc khoảng đã cho
\(\Rightarrow\) (2) có tối đa 4 nghiệm
Không tồn tại m thỏa mãn yêu cầu