Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ặc. mình nhầm
nửa chu vi là: 250:2=125
gọi chiều dài là x (m;x>0)
chiều rộng là: 125-x(m)
=> chều dài thay đổi: x/3; chiều rộng thay đổi 2(125-x) (m)
vì chu vi k đổi nên ta có pt: \(\left(\frac{x}{3}+2\left(125-x\right)\right)2=250\Leftrightarrow\frac{-10}{3}x=-250\Leftrightarrow x=75\)( t/m đk)
=> dài: 75m. rộng: 125-75=50 m
gọi chiều dài là x (m;x>0)
chiều rộng là: 250-x(m)
=> chều dài thay đổi: x/3; chiều rộng thay đổi 2(250-x) (m)
chu vi: 250.2=500(m)
vì chu vi k đổi nên ta có pt: \(\frac{x}{3}+2\left(250-x\right)=500\Leftrightarrow\frac{-5}{3}x=0\Rightarrow x=0\)(k t/m đk)
=> k tìm đc x
Nửa chu vi mảnh đất: \(25-x\) (m)
Gọi chiều rộng mảnh đất là x (m) với 0<x<50
Chiều dài mảnh đất là: \(25-x\) (m)
Chiều dài khi tăng 2 lần: \(2\left(25-x\right)\)
Chiều rộng khi giảm 5m: \(x-5\)
Nửa chu vi mới của mảnh đất là: \(2\left(25-x\right)+x-5=45-x\)
Do chu vi mảnh đất tăng 20m nên ta có pt:
\(2\left(45-x\right)=50+20\)
\(\Rightarrow x=10\left(m\right)\)
Chiều dài mảnh đất là: \(25-10=15\left(m\right)\)
Diện tích: \(15.10=150\left(m^2\right)\)
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có; a+b=125 và a/3+2b=125
=>a=75; b=50
2:
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có:
a+b=50 và (a-4)(b+3)=ab-2
=>a+b=50 và 3a-4b=10
=>a=30 và b=20
S=30*20=600m2
Gọi chiều dài và chiều rộng lầ lượt là x và y (x>y; x,y <59)
Chu vi là 118m nên ta có PT: x+y=59 (1)
Nếu giảm chiều dài đi 5m và tăng chiều rộng thêm 3m thì diện tích giảm đi 14m2 nên ta có PT:
xy-(x-5)(y+3)=14
⇔xy-xy-3x+5y+15=14
⇔-3x+5y=-1 (2)
Từ (1) và (2) có HPT: \(\left\{{}\begin{matrix}x+y=59\\-3x+5y=-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=37\\y=22\end{matrix}\right.\)(TM)
Vậy...
Nửa chu vi mảnh vườn HCN: 118:2=59(m)
Gọi a là độ dài chiều dài mảnh vườn. (0<a<59) (m)
=> Độ dài chiều rộng mảnh vườn: 59-a (m)
=> Diện tích thực tế mảnh vườn: (59-a).a (m2) (1)
* Giả sử tăng chiều rộng thêm 3m và giảm chiều dài đi 5m ,diện tích mảnh vườn lúc đó bằng: (a-5).(59-a+3)=(a-5).(62-a) (m2)
* Vì diện tích giả sử lớn hơn diện tích thực tế 14m2. Nên ta có phương trình:
(59-a).a=[(a-5).(62-a)] +14
<=> -a2 + 59a +a2 -67a = -296
<=> -8a= -296
<=>a=37 (TM)
-> Chiều dài mảnh vườn là 37(m), rộng là 59-37=22(m)
Diện tích của mảnh vườn: 37 x 22= 814(m2)
Gọi chiều rộng, chiều dài lần lượt là a,b
Theo đề ta có:
\(\left\{{}\begin{matrix}a+b=\dfrac{64}{2}=32\\\left(a-2\right)\left(b+4\right)=ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=32\\ab+4a-2b-8=ab\end{matrix}\right.\)
=>a+b=32 và 4a-2b=8
=>a=12; b=20
Lời giải:
Gọi chiều dài và chiều rộng mảnh vườn lúc đầu lần lượt là $a,b$ (m)
Theo bài ra ta có:
$a+b=118:2=59(1)$
$(a-5)(b+3)=ab-14$
$\Leftrightarrow 3a-5b=1(2)$
Từ $(1); (2)\Rightarrow a=37; b=22$ (m)
Diện tích mảnh vườn lúc đầu: $ab=37.22=814$ (m2)
Giải:
Gọi chiều dài và chiều rộng mảnh vườn lần lượt là a và b
Tổng hai cạnh của mảnh vườn là:
\(a+b=\dfrac{250}{2}=125\left(m\right)\)
\(\Leftrightarrow b=125-a\)
Ta có phương trình:
\(2.\left(\dfrac{a}{3}+2b\right)=250\left(m\right)\)
\(\Leftrightarrow2.\left(\dfrac{a}{3}+2.\left(125-a\right)\right)=250\left(m\right)\)
\(\Leftrightarrow2.\left(\dfrac{a}{3}+250-2a\right)=250\left(m\right)\)
\(\Leftrightarrow2.\left(250-\dfrac{5a}{3}\right)=250\left(m\right)\)
\(\Leftrightarrow500-\dfrac{10a}{3}=250\left(m\right)\)
\(\Leftrightarrow\dfrac{10}{3}a=250\left(m\right)\)
\(\Leftrightarrow a=75\left(m\right)\)
\(\Rightarrow b=125-75=50\left(m\right)\)
Diện tích mảnh vườn là:
\(S=a.b=75.50=3750\left(m^2\right)\)
Vậy ...