Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0
⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0
*) (x + 20)⁴ = 0
x + 20 = 0
x = 0 - 20
x = -20
*) (2y - 1)²⁰²⁴ = 0
2y - 1 = 0
2y = 1
y = 1/2
M = 5.(-20)².1/2 - 4.(-2).(1/2)²
= 1000 + 2
= 1002
Ta có: (x - 2)4 \(\ge\)0 \(\forall\)x
(2y - 1)2020 \(\ge\) 0 \(\forall\)y
=> (x - 2)4 + (2y - 1)2020 \(\ge\)0 \(\forall\)x,y
Mà ĐK : (x - 2)4 + (2y - 1)2020 \(\le\)0
=> (x - 2)4 + (2y - 1)2020 = 0
=> \(\hept{\begin{cases}\left(x-2\right)^4=0\\\left(2y-1\right)^{2020}=0\end{cases}}\)
=> \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)
=> \(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Với x = 2, y = 1/2 thay vào biểu thức P, ta có:
P = \(21.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2\) = \(42+2=44\)
Vậy giá trị của P = 44
Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$
Câu 1 .
\(\left|x^2+|x+1|\right|=x^2+5\)
\(Đkxđ:x^2+5\ge0\)
\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 )
\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha )
Vậy : x = 4 hoặc x = -6
\(\left(x-2\right)^4+\left(2y-1\right)^{2022}< =0\)
mà \(\left(x-2\right)^4+\left(2y-1\right)^{2022}>=0\forall x,y\)
nên \(\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(M=11xy^2+4xy^2=15xy^2=15\cdot2\cdot\left(\dfrac{1}{2}\right)^2=\dfrac{15}{2}\)
Ta có: \(\hept{\begin{cases}|x+2y-z|\ge0;\forall x,y,z\\\left(x-y+3z\right)^2\ge0;\forall x,y,z\\\left(z-1\right)^4\ge0;\forall x,y,z\end{cases}}\)\(\Rightarrow|x+2y-z|+\left(x-y+3z\right)^2+\left(z-1\right)^4\ge0;\forall x,y,z\)
Do đó \(|x+2y-z|+\left(x-y+3z\right)^2+\left(z-1\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}|x+2y-z|=0\\\left(x-y+3z\right)^2=0\\\left(z-1\right)^4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2y-z=0\\x-y+3z=0\\z=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2y=1\\x-y=-3\\z=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{4}{3}\\z=1\end{cases}}\)
Vậy ...
\(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\left(1\right)\)
Vì \(\left\{{}\begin{matrix}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2024}\ge0\forall x\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(M=21.2^2.\dfrac{1}{2}+4.2.\left(\dfrac{1}{2}\right)^2=21.2+4.2.\dfrac{1}{4}=42+2=44\)
Ta có: \(\left(x-2\right)^4\ge0\forall x\)
\(\left(2y-1\right)^{2024}\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\forall x;y\)
Mặt khác: \(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\)
nên \(\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^4=0\\\left(2y-1\right)^{2024}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
Thay \(x=2\) và \(y=\dfrac{1}{2}\) vào \(M\), ta được:
\(M=21\cdot2^2\cdot\dfrac{1}{2}+4\cdot2\cdot\left(\dfrac{1}{2}\right)^2\)
\(=42+2\)
\(=44\)
Vậy \(M=44\) tại \(x=2;y=\dfrac{1}{2}\).
#\(Toru\)