K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Đặt x-11=y

Có : \(\left|y\right|+\left|y-4\right|+\left|y-8\right|=\left|y\right|+\left|y-4\right|+\left|8-y\right|\ge\left|y\right|+\left|y-4+8-y\right|=\left|y\right|+4\ge4\)C nha

27 tháng 3 2016

ĐK:  x>=0

=>x+x+1+...+x+19=21x .....................

27 tháng 3 2016

Thế nếu x < 0 thì s

23 tháng 4 2017

GTNN bằng 0 với mọi x thuộc Z

25 tháng 3 2020

A = lx - 2014l + lx - 2015l + lx - 2016l + lx -2017l

 = |x-2014| + |2017 - x| + |x-2015| + |2016-x| >= |x-2014+2017-x| + |x-2015+2016-x|

= 4.

Dấu "=" xảy ra <=> (x-2014)(2017-x) >=0 và (x-2015)(2016-x) >= 0

<=> \(\hept{\begin{cases}\orbr{\begin{cases}\hept{\begin{cases}x\ge2014\\x\le2017\end{cases}}\\\hept{\begin{cases}x\le2014\\x\ge2017\end{cases}\left(kxảyra\right)}\end{cases}}\\\orbr{\begin{cases}\hept{\begin{cases}x\ge2015\\x\le2016\end{cases}}\\\hept{\begin{cases}x\le2015\\x\ge2016\end{cases}\left(kxảyra\right)}\end{cases}}\end{cases}}\)

=> \(2015\le x\le2016\)

Vậy Min A = 4 khi \(2015\le x\le2016\).

3 tháng 12 2015

Ta có

T=/x-1/+/x-2/+/x-3/+/x-4/

=/x-1/+/2-x/+/x-3/+/4-x/

Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2

nhớ tick mình nha

 

28 tháng 6 2017

Vì trị tuyệt đối của một số lớn hơn hoặc bằng số đó nên :

\(A=\left|x+1\right|+\left|x-3\right|=\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)

\(\Rightarrow minA=4\)\(\Rightarrow\hept{\begin{cases}x+1\ge0\\3-x\ge0\end{cases}\Leftrightarrow-1\le}x\le3\)

10 tháng 4 2017

Lập bảng xét dấu rồi làm nha bạn.

10 tháng 4 2017

mk mới lớp 7 k giải đc toán 8 

27 tháng 7 2019

a, \(\left|2x-5\right|=4\)

\(\Rightarrow\orbr{\begin{cases}2x-5=4\\2x-5=-4\end{cases}\Rightarrow}\orbr{\begin{cases}2x=9\\2x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{9}{2}\\x=\frac{1}{2}\end{cases}}\)

b, \(\left|2x-3\right|-\left|3x+2\right|=0\)

\(\Rightarrow\left|2x-3\right|=\left|3x+2\right|\)

\(\Rightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}\Rightarrow}\orbr{\begin{cases}-x=5\\5x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}\)

c, \(\left|x+3\right|-\left|3x+2\right|=x+2\)

Ta có: x + 3 = 0 => x = -3

           3x + 2 = 0 => x = -2/3

Lập bảng xét dấu: 

x x + 3 3x + 2 -2 3 -3 0 0 - + + - - +

Với x < -3

Ta có: -x - 3 + 3x + 2 = x + 2

<=> 2x - 1 = x + 2

<=> x = 3 ( ko t/mãn )

Với -3 ≤ x < -2/3

Ta có: x + 3 + 3x + 2 = x + 2

<=> 4x + 5 = x + 2

<=> 3x = -3

<=> x = -1 ( t/mãn )

Với -2/3 ≤ x 

Ta có: x + 3 - 3x - 2 = x + 2

<=> -2x + 1 = x + 2

<=> -3x = 1

<=> x = -1/3 ( t/mãn )

Vậy....

d, \(\left||x-1|-5\right|=x+5\)

Đk: x + 5 ≥ 0 => x ≥ -5

\(\Rightarrow\orbr{\begin{cases}\left|x-1\right|-5=x+5\\\left|x-1\right|-5=-x-5\end{cases}\Rightarrow\orbr{\begin{cases}\left|x-1\right|=x+25\\\left|x-1\right|=-x\left(Loai\right)\end{cases}}}\)

Giải \(\left|x-1\right|=x+25\)

\(\Rightarrow\orbr{\begin{cases}x-1=-x-25\\x-1=x+25\end{cases}\Rightarrow\orbr{\begin{cases}2x=-24\\0x=26\left(Loai\right)\end{cases}\Rightarrow x}=-12}\)( ko t/mãn )

Vậy x \(\in\varnothing\)