Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số người tổ 1 chuyển sang tổ 2 là :
\(48:\frac{1}{4}=12\)(người)
Số người sau khi chuyển 1/4 người ở tổ 1 sang tổ 2 là :
48:2=24 (người)
Lúc đầu tổ 1 có số người là :
24+12=36(người)
Lúc đầu tổ 2 có số người là :
24-12=12(người)
Đáp số : Tổ 1 : 36 người
Tổ 2 : 12 người
Sau khi chuyển \(\frac{1}{4}\) số thợ sang tổ 2, tổ một còn:
\(1-\frac{1}{4}=\frac{3}{4}\) (số thợ)
Do sau khi chuyển \(\frac{1}{4}\) số thợ ở tổ 1 sang tổ 2 thì số người ở mỗi tổ bằng nhau nên khi đó, số người ở tổ 1 là:
\(48\div2=24\) (người)
Số người ở tổ 1 là:
\(24\div\frac{3}{4}=32\) (người)
Số thợ ở tổ 2 là:
\(48-32=16\) (người)
Chúc bạn học tốt
Cách chọn 2 bạn từ 7 bạn là \(C_{7}^2 \Rightarrow n\left( \Omega \right) = C_{7}^2 = 21\)
Gọi A là biến cố: “Hai bạn được chọn có một bạn nam và một bạn nữ”.
Cách chọn một bạn nam là: 3 cách chọn
Cách chọn một bạn nữ là: 4 cách chọn
Theo quy tắc nhân ta có \(n\left( A \right) = 3.4 = 12\)
Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{12}}{{21}} = \frac{4}{7}\).
Chọn A
Giải :
Số cô giáo vừa tài năng, vừa duyên dáng là :
\(\left(5+4\right)-\left(10-3\right)=2\) (cô giáo)
Vậy có 2 cô giáo vừa tài năng, vừa duyên dáng.
Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega \right) = C_{12}^4\)
a) Số kết quả thuận lợi cho biến cố “Bốn bạn thuộc 4 tổ khác nhau” là số cách sắp xếp 4 bạn vào 4 tổ có \(4!\) cách
Vậy xác suất của biến cố “Bốn bạn thuộc 4 tổ khác nhau” là \(P = \frac{{4!}}{{C_{12}^4}} = \frac{8}{{165}}\)
b) Gọi A là biến cố “Bốn bạn thuộc 2 tổ khác nhau”
A xảy ra với 2 trường hợp sau:
TH1: 3 bạn cùng thuộc 1 tổ và 1 bạn thuộc tổ khác có \(C_4^3.C_3^1.C_2^1 = 24\) cách
TH2: cứ 2 bạn cùng thuộc 1 tổ \(C_4^2.C_3^1.C_2^2.C_2^1 = 36\) cách
Suy ra, số kết quả thuận lợi cho biến cố A là \(n\left( A \right) = 24 + 36 = 60\)
Vậy xác suất của biến cố “Bốn bạn thuộc 2 tổ khác nhau” là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{60}}{{C_{12}^4}} = \frac{4}{{33}}\)
Chọn hai học sinh từ tổ sao cho 2 học sinh cùng giới có 2 công đoạn
\(CD_1:\) Chọn 1 bạn nữ trong 5 bạn nữ \(\Rightarrow\) Có 5 cách chọn
\(CD_2:\) Chọn 1 bạn nam trong 4 bạn nam \(\Rightarrow\) Có 4 cách chọn
Áp dụng quy tắc nhân, ta có : \(5.4=20\) ( cách chọn )
Vậy có 20 cách chọn 2 học sinh từ tổ để 1 bàn có 2 học sinh cùng giới
Lời giải:
Chọn 2 học sinh cùng giới tính nam, có: $C^2_4=6$ cách
Chọn 2 học sinh cùng giới tính nữ, có: $C^2_5=10$ cách
Tổng số cách chọn: $6+10=16$ (cách)
Không gian mẫu:
Chọn 5 người từ 15 người để lập nhóm 1 có \(C_{15}^5\) cách, chọn 5 người từ 10 người còn lại để lập nhóm 2 có \(C_{10}^5\) cách, tổ 3 có \(C_5^5\) cách
\(\Rightarrow C_{15}^5.C_{10}^5.C_5^5\) cách chọn bất kì
Bây giờ ta tính số cách chia sao cho có ít nhất 1 nhóm không có nữ:
Do 7 nữ luôn chia được vào ít nhất 2 nhóm sao cho mỗi nhóm có 5 người, do đó chỉ có nhiều nhất 1 nhóm (trong số 3 nhóm) chỉ toàn là nam.
Chọn 1 nhóm từ 3 nhóm để xếp 5 nam: \(C_3^1\) cách
Chọn 5 nam từ 8 nam để xếp vào nhóm nói trên: \(C_8^5\) cách
Còn 10 em xếp vào 2 nhóm còn lại: \(C_{10}^5.C_5^5\) cách
\(\Rightarrow C_3^1.C_8^5.C_{10}^5.C_5^5\) cách xếp sao cho có 1 ít nhất nhóm ko có nữ
\(\Rightarrow C_{15}^5.C_{10}^5.C_5^5-C_3^1.C_8^5.C_{10}^5.C_5^5\) cách xếp thỏa mãn
Xác suất: ...
Anh ơi! Câu này làm theo cách biến cố đối, hai học sinh nữ đứng cạnh nhau thì như nào ạ, em làm được trực tiếp còn làm gián tiếp không được ạ.
https://hoc24.vn/cau-hoi/doi-tuyen-hoc-sinh-gioi-cua-mot-truong-thpt-co-8-hoc-sinh-nam-va-4-hoc-sinh-nu-trong-buoi-le-trao-phan-thuong-cac-hoc-sinh-tren-duoc-xep-thanh-mot-hang-ngang-tinh-xac-suat-de-khi-xep-sao-cho-2-hoc.7929973126107
\(\Omega \) là tập tất cả 6 học sinh trong 12 học sinh. Vậy \(n\left( \Omega \right) = C_{12}^6 = 924\).
Gọi C là biến cố: “Có 3 học sinh nam và 3 học sinh nữ”. Có \(C_7^3\) cách chọn chọn 3 học sinh nam và \(C_5^3\) cách chọn 3 học sinh nữ. Theo quy tắc nhân, ta có \(C_7^3.C_5^3 = 350\) cách chọn 3 học sinh nam và 3 học sinh nữ tức là \(n\left( C \right) = 350\).Vậy \(P\left( C \right) = \frac{{350}}{{924}} \approx 0,3788\).
Có tổng cộng 6 cách là:
1 ng thuộc tổ 1 và 1 ng thuộc tổ 2
1 ng thuộc tổ 1 và 1 ng thuộc tổ 3
1 ng thuộc tổ 1 và 1 ng thuộc tổ 4
1 ng thuộc tổ 2 và 1 ng thuộc tổ 3
1 ng thuộc tổ 2 và 1 ng thuộc tổ 4
1 ng thuộc tổ 3 và 1 ng thuộc tổ 4