K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

1.

Trước hết bạn nhớ công thức:

$1^2+2^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ (cách cm ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)

Áp vào bài:

\(\lim\frac{1}{n^3}[1^2+2^2+....+(n-1)^2]=\lim \frac{1}{n^3}.\frac{(n-1)n(2n-1)}{6}=\lim \frac{n(n-1)(2n-1)}{6n^3}\)

\(=\lim \frac{(n-1)(2n-1)}{6n^2}=\lim (\frac{n-1}{n}.\frac{2n-1}{6n})=\lim (1-\frac{1}{n})(\frac{1}{3}-\frac{1}{6n})\)

\(=1.\frac{1}{3}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

2.

\(\lim \frac{1}{n}\left[(x+\frac{a}{n})+(x+\frac{2a}{n})+...+(x.\frac{(n-1)a}{n}\right]\)

\(=\lim \frac{1}{n}\left[\underbrace{(x+x+...+x)}_{n-1}+\frac{a(1+2+...+n-1)}{n} \right]\)

\(=\lim \frac{1}{n}[(n-1)x+a(n-1)]=\lim \frac{n-1}{n}(x+a)=\lim (1-\frac{1}{n})(x+a)\)

\(=x+a\) 

22 tháng 4 2017

a) \(\left(\dfrac{1}{2}\right)^n\le10^{-9}\)\(\Leftrightarrow2^{-n}\le10^{-9}\)\(\Leftrightarrow-n\le log^{10^{-9}}_2\)\(\Leftrightarrow-n\le-9log^{10}_2\)\(\Leftrightarrow n\ge9log^{10}_2\)\(\Leftrightarrow n\ge30\).
Vậy \(n=30\).

 

b) \(3-\left(\dfrac{7}{5}\right)^n\le0\)

\(\Leftrightarrow-\left(\dfrac{7}{5}\right)^n\le-3\)

\(\Leftrightarrow\left(\dfrac{7}{5}\right)^n\ge3\)\(\Leftrightarrow n\ge log^3_{\dfrac{7}{5}}\)

\(\Rightarrow\)\(n\in\left\{4;5;6;7;...\right\}\Rightarrow n=4\)

c) \(1-\left(\dfrac{4}{5}\right)^n\ge0,97\)

\(\Leftrightarrow-\left(\dfrac{4}{5}\right)^n\ge-0,3\)

\(\Leftrightarrow\left(\dfrac{4}{5}\right)^n\le0,3\)\(\Leftrightarrow n\ge log^{0,3}_{\dfrac{4}{5}}\)

\(\Rightarrow n\in\left\{6;7;8;9...\right\}\Rightarrow n=6\)

d)\(\left(1+\dfrac{5}{100}\right)^n\ge2\)

\(\Leftrightarrow1,05^n\ge2\)

\(\Rightarrow n\in\left\{15;16;17;18;...\right\}\Rightarrow n=15\)

22 tháng 4 2017

em mới lp 6 k biết trình bày kiểu lp 12

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

NV
2 tháng 2

\(\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\dfrac{x^2+\left(x+1\right)^2+x^2\left(x+1\right)^2}{x^2\left(x+1\right)^2}}=\sqrt{\dfrac{x^2\left(x+1\right)^2+2x^2+2x+1}{x^2\left(x+1\right)^2}}\)

\(=\sqrt{\dfrac{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}{\left(x^2+x\right)^2}}=\sqrt{\dfrac{\left(x^2+x+1\right)^2}{\left(x^2+x\right)^2}}=\dfrac{x^2+x+1}{x^2+x}\)

\(=1+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Rightarrow f\left(1\right).f\left(2\right)...f\left(2020\right)=5^{1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}}\)

\(=5^{2021-\dfrac{1}{2021}}\)

\(\Rightarrow\dfrac{m}{n}=2021-\dfrac{1}{2021}=\dfrac{2021^2-1}{2021}\)

\(\Rightarrow m-n^2=2021^2-1-2021^2=-1\)

18 tháng 1 2018

Biến đổi: ʃ\(\int\dfrac{1dx}{cosx\dfrac{\sqrt{2}}{2}\left(cosx-sinx\right)}=\int\dfrac{\sqrt{2}dx}{cos^2x\left(1-tanx\right)}=\int\dfrac{\sqrt{2}d\left(tanx\right)}{1-tanx}=-\sqrt{2}\ln trituyetdoi\left(1-tanx\right)\)

https://www.youtube.com/channel/UCzeAuHrGhk8hUszunoNtayw

Luyện Thi THPT Quốc Gia miễn phí 100%

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
\(\frac{3x^3f(x)}{f'(x)^2+xf'(x)+x^2}=f'(x)-x\)

\(\Rightarrow 3x^3f(x)=[f'(x)-x][f'(x)^2+xf'(x)+x^2]=f'(x)^3-x^3\)

\(\Rightarrow 3f(x)=\left(\frac{f'(x)}{x}\right)^3-1\)

Đặt \(\frac{f'(x)}{x}=g(x)\Rightarrow f'(x)=xg(x)(1)\) .

\(f(1)=\frac{7}{3}\Rightarrow f'(1)=2\Rightarrow g(1)=2\)

Ta có: \(3f(x)=g(x)^3-1\)

\(\Rightarrow 3f'(x)=3g'(x)g(x)^2\)

\(\Rightarrow f'(x)=g'(x)g(x)^2(2)\)

Từ \((1);(2)\Rightarrow xg(x)=g'(x)g(x)^2\)

\(\Rightarrow x=g'(x)g(x)=\frac{1}{2}[g(x)^2]'\) \(\Rightarrow 2x=[g(x)^2]'\Rightarrow g(x)^2=\int 2xdx=x^2+c\)

Kết hợp với $g(1)=2$ suy ra $c=3$

Vậy \(g(x)^2=x^2+3\Rightarrow f(x)=\frac{g(x)^3-1}{3}=\frac{(x^2+3)^{\frac{3}{2}}-1}{3}\)

\(\Rightarrow f(2)=\frac{\sqrt{343}-1}{3}\)