Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VÌ \(\left(x-1\right)^{2012}\ge0\)
\(\left(y-2\right)^{2010}\ge0\)
\(\left(x-z\right)^{2008}\ge0\)
nên dấu \(=\)xảy ra khi \(\hept{\begin{cases}x=z\\x=1\\y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}}\)
Ta có \(\hept{\begin{cases}\left(3x-5\right)^{2008}\ge0\\\left(y^2-1\right)^{2010}\ge0\\\left(x-z\right)^{2012}\ge0\end{cases}}\)mà \(\left(3x-5\right)^{2008}+\left(y^2-1\right)^{2010}+\left(x-z\right)^{2012}=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x-5\right)^{2008}=0\\\left(y^2-1\right)^{2010}=0\\\left(x-z\right)^{2012}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1;-1\\z=x=\frac{5}{3}\end{cases}}\)
Có : |x-2009|+|x-2012| = |x-2009|+|2012-x| >= |x-2009+2012-x| = 3
Lại có : |x-2010| và |y-2011| đều >= 0
=> |x-2009|+|x-2010|+|y-2011|+|x-2012| >= 3
Dấu "=" xảy ra <=> (x-2009).(2012-x) >= 0 ; x-2010 = 0 ; y-2011 = 0 <=> x=2010 và y=2011
Vậy x=2010 và y=2011
Tk mk nha
Xét \(x\le2010\Rightarrow2010-x+2011-x=2012\Rightarrow x=\frac{2009}{2}\left(TM\right)\)
Xét \(2010< x< 2011\Rightarrow x-2010+2011-x\Rightarrow1=2012\left(loại\right)\)
Xét \(x\ge2011\Rightarrow x-2010+x-2011=2012\Rightarrow x==\frac{6033}{2}\left(TM\right)\)
Vậy \(x\in\left\{\frac{2009}{2};\frac{6033}{2}\right\}\)
a: \(\left(x-2\right)^2>=0\)
\(\left|y-x\right|>=0\)
Do đó: \(\left(x-2\right)^2+\left|y-x\right|>=0\forall x,y\)
=>\(\left(x-2\right)^2+\left|y-x\right|+3>=3\forall x,y\)
=>A>=3 với mọi x,y
Dấu = xảy ra khi x-2=0 và y-x=0
=>x=2=y
b: \(\left|x+5\right|>=0\)
=>\(\left|x+5\right|+5>=5\)
=>B>=5 với mọi x
Dấu = xảy ra khi x+5=0
=>x=-5
c: \(\left|x-2010\right|>=0\)
=>\(-\left|x-2010\right|< =0\)
=>\(-\left|x-2010\right|+2012< =2012\)
=>\(C=\dfrac{2011}{2012-\left|x-2010\right|}>=\dfrac{2011}{2012}\forall x\)
Dấu = xảy ra khi x=2010
a) Ta có:
\(A=\left(x-2\right)^2+\left|y-x\right|+3\)
Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left|y-x\right|\ge0\end{matrix}\right.\)
\(\Rightarrow A=\left(x-2\right)^2+\left|y-x\right|+3\ge3\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-2=0\\y-x=0\end{matrix}\right.\)
\(\Rightarrow x=y=2\)
Vậy: \(A_{min}=3\Leftrightarrow x=y=2\)
b) Ta có:
\(B=\left|x+5\right|+5\)
Mà: \(\left|x+5\right|\ge0\)
\(\Rightarrow B=\left|x+5\right|+5\ge5\)
Dấu "=" xảy ra:
\(x+5=0\Rightarrow x=-5\)
Vậy: \(B_{min}=5\Leftrightarrow x=-5\)
c) Ta có:
\(C=\dfrac{2011}{2012-\left|x-2010\right|}\)
Mà: \(\left|x-2010\right|\ge0\)
\(\Rightarrow C=\dfrac{2011}{2012-\left|x-2010\right|}\ge\dfrac{2011}{2012}\)
Dấu "=" xảy ra khi:
\(x-2010=0\Rightarrow x=2010\)
Vậy: \(C_{min}=\dfrac{2011}{2012}\Leftrightarrow x=2010\)
a: =>|5x+4|=19
=>5x+4=19 hoặc 5x+4=-19
=>5x=15 hoặc 5x=-23
=>x=3 hoặc x=-23/5
b: =>3|2x-9|=33
=>|2x-9|=11
=>2x-9=11 hoặc 2x-9=-11
=>2x=20 hoặc 2x=-2
=>x=10 hoặc x=-1
d: =>|17x-5|=|17x+5|
=>17x-5=17x+5 hoặc 17x-5=-17x-5
=>34x=0
hay x=0
à câu này dễ
X= -10000000