Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)
\(=-27\)
or
\(A=x^3+27-54-x^3=-27\)
b)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
c)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
d)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=6x^2-3x-10\)
\(\left|x+\dfrac{1}{1.5}\right|+\left|x+\dfrac{1}{5.9}\right|+\left|x+\dfrac{1}{9.14}\right|+...+\left|x+\dfrac{1}{397.401}\right|\ge0\)
\(\Rightarrow101x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+\dfrac{1}{1.5}+x+\dfrac{1}{5.9}+...+x+\dfrac{1}{397.401}=101x\)
\(\Rightarrow101x+\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{397.401}\right)=x\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{397.401}\right)=x\)
\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+....+\dfrac{1}{397}-\dfrac{1}{401}\right)\)
\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{401}\right)\)
\(\Rightarrow x=\dfrac{1}{4}.\dfrac{400}{401}\)
\(\Rightarrow x=\dfrac{100}{401}\)
(2x−1)3−3(x+2)(x−3)=(3+2x)3−3x(x+1)
<=>\(8x^3-12x^2+6x-1-3x^2+3x+18=9+54x+36x^2+8x^3-3x^2-3x\)
<=>\(48x^2+42x-8=0\)
<=> \(x=\frac{-21\pm5\sqrt{33}}{48}\)
a, \(x^2\) - 19 = 5.9
\(x^2\) - 19 = 45
\(x^2\) = 45 + 19
\(x^2\) = 64
\(x^2\) = 82
\(x\) = 8
b, (2\(x\) + 1)3 = -0,001
(2\(x\) + 1)3 = (-0,1)3
2\(x\) + 1 = -0,1
2\(x\) = -0,1 - 1
2\(x\) = - 1,1
\(x\) = -1,1: 2
\(x\) = - 0,55
\(\Leftrightarrow x^2-6x+9-4x^2-4x-1-2\left(x^2+x-2\right)=3\left(x-3\right)-\left(4x^2+8x-x-2\right)\)
\(\Leftrightarrow-3x^2-10x+8-2x^2-2x+4=3\left(x-3\right)-4x^2-7x+2\)
\(\Leftrightarrow-5x^2-12x+12=3x-9-4x^2-7x+2\)
\(\Leftrightarrow-5x^2-12x+12=-4x^2-4x-7\)
\(\Leftrightarrow-4x^2-4x-7+5x^2+12x-12=0\)
\(\Leftrightarrow x^2+8x-19=0\)
\(\text{Δ}=8^2-4\cdot1\cdot\left(-19\right)=76+64=140\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-8-2\sqrt{35}}{2}=-4-\sqrt{35}\\x_2=-4+\sqrt{35}\end{matrix}\right.\)