K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2020

Thử câu 2 phát :v

BĐT cần chứng minh tương đương với:

\(\frac{a^2c+b^2a+c^2b+2a^2+2b^2+2c^2+2ab+2bc+2ca+4a+4b+4c}{abc+2ab+2bc+2ca+4a+4b+4c+8}\le1\)

\(\Leftrightarrow a^2c+b^2a+c^2b+6\le abc+8\)

\(\Leftrightarrow a^2c+b^2a+c^2b-abc\le2\) (*)

Giả sử b là số ở giữa. Thế thì: a(b - a)(b - c) \(\le\) 0.

\(\Leftrightarrow\) ab2 + a2c - a2b - abc \(\le\) 0

\(\Leftrightarrow\) ab2 + bc2 + ca2 - abc \(\le\) a2b + bc2

Đặt P = a2b + bc2 = b(a2 + c2)

Ta có: 2P2 = 2b2(a2 + c2)2

Áp dụng BĐT AM - GM ta có:

2P2 = 2b2 . (a2 + c2) . (a2 + c2) \(\le\) \(\left(\frac{2b^2+a^2+c^2+a^2+c^2}{3}\right)^3=8\)

\(\Rightarrow\) P \(\le\) 2

Do đó ab2 + bc2 + ca2 - abc \(\le\) P = 2. (*) được chứng minh.

Dấu "=" xảy ra khi và chỉ khi (a, b, c) \(\in\) {(2; 2; 2); (0; 1; \(\sqrt{2}\))} và các hoán vị.

21 tháng 4 2020

Câu 1:

BĐT cần chứng minh tương đương với:

\(\frac{a^2b^2+b^2c^2+c^2a^2+2\left(a^2+b^2+c^2\right)+3}{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^{ }+a^2+b^2+c^2+1}\ge\frac{3}{2}\)

\(\Leftrightarrow a^2+b^2+c^2+3\ge3a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)^2\ge9a^2b^2c^2+3\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^3b+ab^3+b^3c+bc^3+c^3a+ca^3+3abc\left(a+b+c\right)\ge9a^2b^2c^2+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)+bc\left(b^2-2bc+c^2\right)+ca\left(c^2-2ca+a^2\right)+3abc\left(a+b+c\right)\ge9a^2b^2c^2\)

\(\Leftrightarrow ab\left(a-b\right)^2+bc\left(b-c\right)^2+ca\left(c-a\right)^2+3abc\left(a+b+c-3\right)\ge0\)

Bất đẳng thức trên luôn đúng vì a + b + c \(\ge\) 3 (dễ c/m).

Không biết có đúng ko.

<Chuyên đề> Hình học phẳng và không gian ( Post 1) 1/Nêu ra cách chứng minh định lí nổi tiếng Pythagoras ( mình biết tới 6 cách CM) 2/Cho tam giác ABC với diện tích S. Trên AB,BC,CA lấy M,N,P sao cho \(\frac{MA}{MB}=\frac{NB}{NC}=\frac{PC}{PA}=k\) a.Tính diện tích MNP theo S và k b.Với k=? thì S đạt MIN 3/Chứng minh 3 đường cao của tam giác đồng quy tại 1 điểm 5/Cho tứ giác ABCD, các điểm E,F,G,H chia các cạnh AB,BC,CD,DA theo tỉ...
Đọc tiếp

<Chuyên đề> Hình học phẳng và không gian ( Post 1)

1/Nêu ra cách chứng minh định lí nổi tiếng Pythagoras ( mình biết tới 6 cách CM)

2/Cho tam giác ABC với diện tích S. Trên AB,BC,CA lấy M,N,P sao cho

\(\frac{MA}{MB}=\frac{NB}{NC}=\frac{PC}{PA}=k\)

a.Tính diện tích MNP theo S và k

b.Với k=? thì S đạt MIN

3/Chứng minh 3 đường cao của tam giác đồng quy tại 1 điểm

5/Cho tứ giác ABCD, các điểm E,F,G,H chia các cạnh AB,BC,CD,DA theo tỉ số 1:2. Chứng minh

a/EG=HF b/EG vuông góc HF

Các bạn lưu ý như sau:

Mỗi người chỉ trả lời một lần, tất nhiên là nếu có nhiều cách hãy bổ sung vào phần bình luận, nếu thiếu/chỉnh sửa hãy bổ sung vào phần bình luận

+) Thời gian là 1 tuần.

+) Phần thưởng là 1 GP cho câu trả lời đúng. Riêng những câu trả lời có nhiều cách hoặc nhưng câu trả lời hay, sẽ xem xét tặng 2 - 3 GP/ cách hoặc /câu trả lời.

Mọi người tham gia vui vẻ nhé!@TRẦN MINH HOÀNG ,

@Ngu Hết Các Môn

@tth_new

@Đào Phạm Khánh Ly

4
25 tháng 4 2020

3. Ôn tập cuối năm phần hình học

Kẻ các đường vuông góc lần lượt từ B và C đến cạnh đối diện trong tam giác ABC. Gọi giao điểm của hai đường ấy là H. Ta sẽ c/m AH \(\perp\) BC.

Thật vậy, qua A, B, C kẻ các đường song song với cạnh đối diện cắt nhau như hình vẽ.

Dễ thấy các tam giác ABC, ABD, BCE, CAF bằng nhau.

Do đó BD = BE, CE = CF, AF = AD.

Mặt khác, BH \(\perp\) DE và CH \(\perp\) EF (Dễ c/m) nên HD = HE, HE = HF.

Suy ra HF = HD. Kết hợp với AF = AD ta có AH là đường trung trực của FD hay AH \(\perp\) FD \(\Rightarrow\) AH \(\perp\) BC.

25 tháng 4 2020

1: (Câu này dễ nhất :))

Ôn tập cuối năm phần hình học

Xét \(\Delta\)ABC vuông tại B. Ta sẽ chứng minh: AB2 + BC2 = CA2

Vẽ \(\Delta\)CAE vuông cân tại A (E nằm trên nửa mặt phẳng bờ AC không chứa B.

Qua E vẽ đường thẳng song song với BC cắt AB tại D.

Dễ chứng minh: \(\widehat{CAB}=\widehat{AED}\) (cùng phụ với \(\widehat{EAD}\))

Do đó \(\Delta ABC=\Delta EDA\left(ch-gn\right)\)

Ta có:

\(S_{ABC}+S_{CAE}+S_{EDA}=S_{BCED}\)

\(\Leftrightarrow\frac{AB.BC+AC.AE+AD.DE}{2}=\frac{\left(DE+BC\right).\left(AB+AD\right)}{2}\)

\(\Leftrightarrow2AB.BC+AC^2=\left(AB+BC\right)^2\)

\(\Leftrightarrow AB^2+BC^2=CA^2\)

9 tháng 6 2017

sr tui ko có câu hỏi tương tự tui chỉ có câu hỏi y hệt thôi Xem câu hỏi

29 tháng 3 2022

Lời giải

Bất đẳng thức cần chứng minh được viết lại thành

$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 5$

Ta chứng minh bất đẳng thức sau đây

$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$

Thật vậy, bất đẳng thức trên tương đương với

$latex \displaystyle \frac{{{\left( a-1 \right)}^{2}}\left( 2{{a}^{2}}+6a+3 \right)}{3{{a}^{2}}}\ge 0$

Hiển nhiên đúng với a là số thực dương.

Áp dụng tương tự ta được $latex \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{7}{3}-\frac{2b}{3};\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{7}{3}-\frac{2c}{3}$

Cộng theo vế các bất đẳng thức trên ta được

$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}}{3}+\frac{2{{b}^{2}}}{3}+\frac{2{{c}^{2}}}{3}\ge 7-\frac{2\left( a+b+c \right)}{3}=5$

Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi $latex a=b=c=1$.

Chúng ta sẽ khởi đầu kỹ thuật này bằng việc đưa ra cách giải thích cho việc tìm ra bất đẳng thức phụ trên và nó cũng chính là cách giải thích cho các bài toán sau này của chúng ta.

Bài toán trên các biến trong cả hai vế và điều kiện đều không ràng buộc nhau điều này khiến ta nghĩ ngay sẽ tách theo từng biến để chứng minh được đơn giản hơn nếu có thể. Nhưng rõ ràng chỉ từng đó thôi là không đủ. Để ý đến dấu đẳng thức xẩy ra nên ta nghĩ đến chứng minh bất đẳng thức sau

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}\Leftrightarrow \frac{\left( a-1 \right)\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}\ge 0$

Tuy nhiên đánh giá trên không hoàn toàn đúng với a thực dương.

Để ý là với cách làm trên ta chưa sử dụng điều kiện .

Như vậy ta sẽ không đi theo đường lối suy nghĩ đơn giản ban đầu nữa mà sẽ đi tìm hệ số để bất đẳng thức sau là đúng

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+ma+n\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)$

Trong đó m và n là các hệ số chưa xác định.

Thiết lập tương tự với các biến b và c ta được

$latex \displaystyle \frac{1}{{{b}^{2}}}+\frac{2{{b}^{2}}}{3}\ge \frac{5}{3}+mb+n;\,\,\frac{1}{{{c}^{2}}}+\frac{2{{c}^{2}}}{3}\ge \frac{5}{3}+mc+n$

Cộng theo vế các bất đẳng thức trên ta có

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}}{3}\ge 5+m\left( a+b+c \right)+3n=5+3\left( m+n \right)$

Như vậy ở đây 2 hệ số m và n phải thỏa mãn điều kiện $latex \displaystyle m+n=0\Leftrightarrow n=-m$. Thế vào (1) dẫn đến

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)$

Đến đây ta chỉ cần xác định hệ số duy nhất là m để bất đẳng thức (2) là đúng. Chú ý đẳng thức xẩy ra tại $latex a=b=c=1$ nên ta cần xác định m sao cho

$latex \displaystyle \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{5}{3}+m\left( a-1 \right)\Leftrightarrow \left( a-1 \right)\left( \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}-m \right)\ge 0$

Khi cho $latex a=1$ thì ta có $latex \displaystyle \frac{\left( a+1 \right)\left( 2{{a}^{2}}-3 \right)}{3{{a}^{2}}}=-\frac{2}{3}$ từ đó ta dự đoán rằng $latex \displaystyle m=-\frac{2}{3}$ để tạo thành đại lượng bình phương $latex {{\left( a-1 \right)}^{2}}$ trong biểu thức. Từ đó ta sẽ chứng minh bất đẳng thức phụ

$latex \frac{1}{{{a}^{2}}}+\frac{2{{a}^{2}}}{3}\ge \frac{7}{3}-\frac{2a}{3}$

29 tháng 3 2022

trời ơi ? hack

\(\lceil\) Chuyên đề \(\rfloor\): Bất đẳng thức hàng tuần. (Post 2) 1/ Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 3. Chứng minh: \(a^2+b^2+c^2+3abc\ge6\) 2/ Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Chứng minh rằng: \(\frac{a^2}{3a+b^2}+\frac{b^2}{3b+c^2}+\frac{c^2}{3c+a^2}\ge\frac{3}{4}\) 3/ Cho a, b, c là 3 cạnh của tam giác. Chứng minh...
Đọc tiếp

\(\lceil\) Chuyên đề \(\rfloor\): Bất đẳng thức hàng tuần. (Post 2)

1/ Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 3. Chứng minh:

\(a^2+b^2+c^2+3abc\ge6\)

2/ Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Chứng minh rằng:

\(\frac{a^2}{3a+b^2}+\frac{b^2}{3b+c^2}+\frac{c^2}{3c+a^2}\ge\frac{3}{4}\)

3/ Cho a, b, c là 3 cạnh của tam giác. Chứng minh rằng:

\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge\frac{\left(2a+b\right)\left(2b+c\right)\left(2c+a\right)}{27}\)

4/ Cho a, b, c là các số thực dương. Chứng minh rằng:

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\ge\sqrt{\frac{11\left(a^2+b^2+c^2\right)}{ab+bc+ca}+5}\)

5/ Cho a, b, c là số thực dương. Chứng minh:

\(\frac{a+b+c}{9\sqrt[3]{abc}}\ge\frac{a^2}{4a^2+5bc}+\frac{b^2}{4b^2+5ca}+\frac{c^2}{4c^2+5ab}\)

Xem TOPIC (Post 1) tại:Câu hỏi của tth - Toán lớp 8 | Học trực tuyến (vẫn nhận bài đến hết thứ 7 tuần này, ngày 25/4.)

TOPIC này thời gian nộp bài tương tự như trước (1 tuần, đến hết thứ Năm tuần sau, ngày 30/4)

Riêng bài \(5\) mong mọi người tìm những cách hay chứ đừng như cách em, nhìn là hết muốn đọc rồi :))

9
23 tháng 4 2020

Bài 1 : \(VT=a^2+b^2+c^2+3abc=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)+3abc\left(a+b+c\right)}{a+b+c}\ge\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc}{a+b+c}\)

\(=\frac{a^3+b^3+c^3+3abc+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+6abc}{a+b+c}\)

\(\ge\frac{2ab\left(a+b\right)+2bc\left(b+c\right)+2ca\left(c+a\right)+6abc}{a+b+c}\)

\(=\frac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{a+b+c}=6\)

Có sai sót gì xin cmt bên dưới ạ

23 tháng 4 2020

Nguyễn Thị Ngọc Thơ đúng vậy, lời giải của em:

\(VT-VP\ge\frac{\left(a+b\right)^2}{2}+c^3-\frac{\left(541-37\sqrt{37}\right)}{108}\)

\(={\frac { \left( 6\,c+1+2\,\sqrt {37} \right) \left( -6\,c-1+\sqrt {37 } \right) ^{2}}{216}} \geqq 0\)

Done.

Cuộc thi vào nhưng ngày sắp đi học của các bạn hãy tận hưởng !Cuộc thi môn Tiếng Anh, toán vòng 2,... vào ngày 31/8!!Đơn đăng kí :trả lời gồm 5 bài toán (  2 bài lớp 7, 2 bài lớp 8, đặc biệt); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)TOÁN:Lớp 7: ( 15 sp cho 3 người trả lời...
Đọc tiếp

Cuộc thi vào nhưng ngày sắp đi học của các bạn hãy tận hưởng !

Cuộc thi môn Tiếng Anh, toán vòng 2,... vào ngày 31/8!!

Đơn đăng kí :trả lời gồm 5 bài toán (  2 bài lớp 7, 2 bài lớp 8, đặc biệt); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)

TOÁN:

Lớp 7: ( 15 sp cho 3 người trả lời đầu; 2sp cho hình vẽ )

Hình học:cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nữa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng \(EF=\frac{1}{2}CD\)

Số học: Chứng minh rằng trong các số tự nhiên thế nào cũng có số k sao cho \(1983^k-1\)chia hết cho \(10^5\)

Lớp 8: ( bài toán số 20sp; toán hình 15sp cho 3 người đầu tiên )

Câu 1: Cho tam giác ABC. Trong các hình chữ nhật có 2 đỉnh nằm trên cạnh BC và 2 đỉnh còn lại lần lượt nằm trên 2 cạnh AB và AC, hãy tìm hình chữ nhật có diện tích lớn nhất

Câu 2:Chứng minh các bất phương trình sau tương đương 

a) \(2x^2+3x+1>0\)\(\frac{2}{3}x^2+x+\frac{1}{3}>0\)

b)\(4x-1< 0\)và \(1-4x>0\)

c)\(\frac{3x-2}{4}+2\frac{1}{2}>0\)và \(3x+8>0\)

2 Câu đặc biệt  :3 

Cho a, b, c là các số thực dương tùy ý. chứng minh rằng 

\(\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(c+a\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\le\frac{6}{5}\)

Giai phương trình \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

Thời gian công bố kết quả 7:30 ngày 1/9

(bạn nào trên 1000 điểm hỏi đáp có thể tham gia tài trợ sp , các bạn tài trợ cũng có thể tham gia) 

NỘI QUY : KHÔNG COP BÀI, KHÔNG CHÉP MẠNG ( khuyến cáo làm bài thi nên ghi câu mấy để dễ chấm )

mong cô chi  tick gp cho các bạn được thưởng 

20
31 tháng 8 2020

Câu đặc biệt :

\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

\(\Leftrightarrow9x^4+36x^3+29x^2-14x-16=-16\)

\(\Leftrightarrow9x^4+36x^3+29x^2-14x=0\)

\(\Leftrightarrow x\left(9x^3+36x^2+29x-14\right)=0\)

\(\Leftrightarrow x\left[\left(9x^3+18x^2-7x\right)+\left(18x^2+36x-14\right)\right]=0\)

\(\Leftrightarrow x\left[x\left(9x^2+18x-7\right)+2\left(9x^2+18x-7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(9x^2+18x-7\right)=0\)

\(\Leftrightarrow x\left(x+2\right)\left[\left(9x^2+21x\right)-\left(3x+7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left[3x\left(3x+7\right)-\left(3x+7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)

<=> x = 0 hoặc x + 2 = 0 hoặc 3x - 1 = 0 hoặc 3x + 7 = 0

<=> x = 0 hoặc x = - 2 hoặc x = 1/3 hoặc x = 7/3

Vậy phương trình có tập nghiệm là : \(S=\left\{0;\frac{1}{3};\frac{7}{3};-2\right\}\)

31 tháng 8 2020

Câu 2:

a) Ta có: \(2x^2+3x+1>0\)

\(\Leftrightarrow\frac{2x^2+3x+1}{3}>\frac{0}{3}\)

\(\Leftrightarrow\frac{2}{3}x^2+x+\frac{1}{3}>0\)

=> đpcm

b) Ta có: \(4x-1< 0\)

\(\Leftrightarrow0-\left(4x-1\right)>0\)

\(\Leftrightarrow1-4x>0\)

=> đpcm

c) Ta có: \(\frac{3x-2}{4}+2\frac{1}{2}>0\)

\(\Leftrightarrow\frac{3x-2}{4}+\frac{10}{4}>0\)

\(\Leftrightarrow\frac{3x+8}{4}>0\)

\(\Rightarrow3x+8>0\)

=> đpcm

1 tháng 6 2017

Ta có: 

\(\frac{bc}{a^2+1}\le\frac{1}{4}.\frac{\left(b+c\right)^2}{a^2+b^2+a^2+c^2}\)

\(\le\frac{1}{4}.\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+b^2}\right)\)(1)

Tương tự ta có:

\(\hept{\begin{cases}\frac{ac}{b^2+1}\le\frac{1}{4}.\left(\frac{a^2}{b^2+a^2}+\frac{c^2}{b^2+c^2}\right)\\\frac{ab}{c^2+1}\le\frac{1}{4}.\left(\frac{a^2}{c^2+a^2}+\frac{b^2}{c^2+b^2}\right)\end{cases}}\)

Cộng mấy cái trên vế theo vế ta được

\(\frac{bc}{a^2+1}+\frac{ac}{b^2+1}+\frac{ab}{c^2+1}\le\frac{1}{4}.\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}+\frac{a^2}{b^2+a^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{c^2+a^2}+\frac{b^2}{c^2+b^2}\right)\)

\(=\frac{3}{4}\)

1 tháng 6 2017

\(\frac{bc}{a^2+1}=\frac{bc}{a^2+b^2+a^2+c^2}\le\frac{1}{4}\left(\frac{bc}{a^2+b^2}+\frac{bc}{a^2+c^2}\right)\le\frac{1}{4}\left(\frac{bc}{2ab}+\frac{bc}{2ac}\right)\)

21 tháng 10 2016

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath