K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

Đáp án D

Các trường hợp thẻ lấy thỏa mãn đề bài là 3, 9, 15

Suy ra xác suất lấy được thẻ đó là  3 20 = 0 , 15 .

27 tháng 11 2021

\(\left|\Omega\right|=20.20=400\)

\(\left|\Omega_A\right|=2.20=40\)

\(\Rightarrow P\left(A\right)=\dfrac{40}{400}=\dfrac{1}{10}\)

24 tháng 11 2017

A

14 tháng 8 2019

Đáp án C

4 tháng 5 2018

B = {5,10,15,20,25,30}, n(B) = 6

⇒P(B) =6/30 =1/5

Chọn đáp án là B

Nhận xét: học sinh có thể nhầm với số thẻ và số ghi trên thẻ, hoặc vận dụng nhầm công thức P(A) =(n(Ω))/(n(A)) dẫn đến các phương án khác còn lại.

26 tháng 12 2021

Gọi T là biến cố "Lấy được thẻ có ghi số chia hết cho 3".

\(\left|\Omega\right|=C^2_{17}\)

TH1: Lấy được 1 thẻ có ghi số chia hết cho 3.

\(\Rightarrow\) Có \(C^1_5.C^1_{12}\) cách lấy.

TH2: Lấy được 2 thẻ có ghi số chia hết cho 3.

\(\Rightarrow\) Có \(C^2_5\) cách lấy.

\(\Rightarrow\left|\Omega_T\right|=C^1_5.C^1_{12}+C^2_5\)

\(\Rightarrow P\left(T\right)=\dfrac{\left|\Omega_T\right|}{\left|\Omega\right|}=\dfrac{C^1_5.C^1_{12}+C^2_5}{C^2_{17}}=\dfrac{35}{68}\)

26 tháng 12 2021

undefined

16 tháng 1 2019

Chọn C

15 tháng 4 2017

Chọn B

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 50 thẻ từ hộp có \({C}_{50}^2 = 1225\) cách.

a) Gọi \(C\) là biến cố “2 thẻ lấy ra là số chẵn”, \(D\) là biến cố “2 thẻ lấy ra là số lẻ”

\( \Rightarrow A = C \cup D\)

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ chẵn có \({C}_{25}^2 = 300\) cách

\( \Rightarrow n\left( C \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^2 = 300\) cách

\( \Rightarrow n\left( D \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Vì \(C\) và \(D\) là hai biến cố xung khắc nên \(P\left( A \right) = P\left( C \right) + P\left( D \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)

b) Gọi \(E\) là biến cố “1 thẻ chia hết cho 4, 1 thẻ là số lẻ”

\( \Rightarrow B = C \cup E\)

Lấy ngẫu nhiên 1 thẻ trong tổng số 12 thẻ chia hết cho 4 có \({C}_{12}^1 = 12\) cách

Lấy ngẫu nhiên 1 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^1 = 25\) cách

\( \Rightarrow n\left( E \right) = 12.25 = 300 \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left(\Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Vì \(C\) và \(E\) là hai biến cố xung khắc nên \(P\left( B \right) = P\left( C \right) + P\left( E \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)