K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số tam giác lập được là: \(C^2_6\cdot1=15\left(tamgiác\right)\)

13 tháng 3 2023

gthich chi tiết dc  k ạ

12 tháng 7 2018

Đáp án: B

a, b đúng.

c sai vì Góc tạo bởi hai tia phân giác của hai góc kề bù là góc vuông không phải góc nhọn.

d sai vì Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến dường thẳng đó, đường vuông góc là đường ngắn nhất không phải dài nhất.

(C): x^2+y^2+4x-2y-4=0

=>(x+2)^2+(y-1)^2=9

=>I(-2;1); R=3

M thuộc d nên M(a;1-a)

M nằm ngoài (C) nên IM>R

=>IM^2>9

=>2a^2+4a-5>0

MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5

=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)

A,B thuộc (C)

=>Tọa độ A,B thỏa mãn phương trình:

 x^2+y^2+4x-2y-4=0(2)

(1)-(2)=(a+2)x-ay+3a-5=0(3)

Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB

(E) tiếp xúc AB nên (E): R1=d(E,AB)

Chu vi của (E) lớn nhất khi R1 lớn nhất

=>d(E;AB) lớn nhất

Gọi H là hình chiếu vuông góc của E lên AB

=>d(E,Δ)=EH<=EK=căn 10/2

Dấu = xảy ra khi H trùng K

=>AB vuông góc EK

vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)

AB vuông góc EK

=>-1/2a+3/2(a+2)=0

=>a=-3

=>M(-3;4)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Cách 1:

TH1: 2 điểm thuộc a và 1 điểm thuộc b

Số cách chọn 2 điểm thuộc đường thẳng a là \(C_3^2\) (cách chọn)

Số cách chọn 1 điểm thuộc đường thẳng b là: \(C_4^1\) (cách chọn)

=> Số tam giác tạo thành là: \(C_3^2 . C_4^1 = 12\)

TH2: 2 điểm thuộc b và 1 điểm thuộc a

Số cách chọn 2 điểm thuộc đường thẳng b là \(C_4^2\) (cách chọn)

Số cách chọn 1 điểm thuộc đường thẳng a là: \(C_3^1\) (cách chọn)

=> Số tam giác tạo thành là: \(C_4^2 + C_3^1 = 18\)

Vậy có tất cả 12 + 18 = 30 tam giác.

Cách 2:

Số cách chọn 3 điểm thuộc đường thẳng a là: \(C_3^3\) (cách chọn)

Số cách chọn 3 điểm thuộc đường thẳng b là: \(C_4^3\) (cách chọn)

Số cách chọn 3 điểm bất kì trong 7 điểm đã cho là: \(C_7^3\) (cách chọn)

Số cách chọn 3 điểm không thẳng hàng trong 7 điểm đã cho là: \(C_7^3 - C_4^3 - C_3^3 = 30\) (cách chọn)

Vậy số tam giác có thể có là : 30 (tam giác)

24 tháng 1 2019

Khi ba điểm M, N, P thẳng hàng, trong đó điểm N nằm giữa hai điểm M và P. Khi đó, M N →   ;   M P → cùng hướng với nhau.

Đáp án B

20 tháng 10 2019

1). Vì MP là đường kính suy ra  P N ⊥ M N  (1).

Vì MD là đường kính suy ra  D N ⊥ M N  (2).

Từ (1) và (2), suy ra N; P; D thẳng hàng.