Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-2\end{matrix}\right.\)
Ta có:
ƯCLN(312, 27) = 3
Mà 3 không là ước của 2020
\(\Rightarrow\) Không tồn tại cặp số nguyên (a; b) thỏa mãn 312a - 27b = 2020
a) Xét x(y+3) +y =14
=> x(y+3) +(y+3) = 14+3
=> (y+3)(x+1)=17
=> 17 chia hết cho y+3 (đpcm)
b) Vì (y+3)(x+1)=17
=> y+3 và x+1 là ước của 17
Mà x,y là số tự nhiên
=> y+3 và x+1 thuộc tập hợp 1 , 17
Ta có bảng sau:
x+1 | 1 | 17 |
x | 0 | 16 |
y+3 | 17 | 1 |
y | 14 | -2 |
Mà x,y là số tự nhiên => x=0 thì y=14
Vậy x=0 thì y=14
11=1x11=11x1=-1x-11=-11x-1
TH1:
2x-1=1 y+4=11
2x=2 y=7
x=1
TH2:
2x-1=11 y+4=1
2x=12 y=-5
x=6
TH3:
2x-1=-1 y+4=-11
2x=-2 y=-15
x=-1
TH4:
2x-1=-11 y+4=-1
2x=-10 y=-5
x=-5
a) không vi VT luôn chia hết cho 3 với mọi x,y trong khi VP Ngược lại.
b) tương tự thay 3 =5
Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
<=> x2-1 = 2y2
-Xét x=2 (ktm); x=3 => y=2
-Xét y = 3(ktm)
-Xét x, y > 3: x, y nt
x2 chia 3 dư 1 -> x2-1 chia hết cho 3; y2 chia 3 dư 1 -> 2y2 chia 3 dư 2
=> x, y >3 (ktm)
Vậy (x;y) = (3;2)