Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ∠ ( B 1 Ax) = α 1 ; ∠ ( B 2 Ax) = α 2 ; ∠ ( B 3 Ax) = α 3 ; ∠ ( B 4 Ax) = α 4 . Dùng máy tính bỏ túi CASIO fx – 220 tính tg α 1 , tg α 2 , tg α 3 , tg α 4 và suy ra các góc tương ứng.
Ta có:
tg α 1 = 3 ⇒ α 1 ≈ 71 ° 33 ' 54 , 18 ' '
tg α 2 = 2 ⇒ α 2 ≈ 63 ° 26 ' 5 , 82 ' '
tg α 3 = 1 ⇒ α 3 ≈ 45 °
tg α 4 = 1/2 ⇒ α 4 ≈ 26 ° 33 ' 54 , 18 ' '
\(f\left(a,b\right)=a^2+8b^2-6ab+14a-40b+48=3\)
\(\Leftrightarrow f\left(a,b\right)=a^2+8b^2-6ab+14a-40b+45=0\)
\(\Leftrightarrow a^2+2a\left(7-3b\right)+\left(8b^2-40b+45\right)=0\)
Xét \(\Delta'=\left(7-3b\right)^2-\left(8b^2-40b+45\right)=b^2-2b+4=\left(b-1\right)^2+3>0\)
Vậy PT luôn có hai nghiệm phân biệt.
Vì a,b nguyên nên \(b^2-2b+4=k^2\left(k\in N\right)\)
\(\Leftrightarrow k^2-\left(b-1\right)^2=3\Leftrightarrow\left(k-b+1\right)\left(k+b-1\right)=3\)
Xét các trường hợp với k-b+1 và k+b-1 là các số nguyên được :
(b;k) = (0;2) ; (0;-2) ; (2;2) ; (2;-2)
Thay lần lượt các giá trị của b vào f(a,b) = 3 để tìm a.
Vậy : (a;b) = (-9;0) ; (-5;0) ; (-3;2) ; (1;2)
Đặt \(\sqrt{x^2+x+0,1}=a\ge0\) cho dễ nhìn
\(\Rightarrow\sqrt{2009+2010a}-\sqrt{2009-2010a}=20\)\(\left(0\le a\le\frac{2009}{2010}\right)\)
\(\Leftrightarrow2009+2009-2\sqrt{2009^2-2010^2a^2}=400\)
\(\Leftrightarrow\sqrt{2009^2-2010^2a^2}=1809\)
\(\Leftrightarrow2009^2-2010^2a^2=1809^2\)
\(\Leftrightarrow a^2=\frac{7636}{40401}\)
\(\Rightarrow x^2+x+0,1=\frac{7636}{40401}\)
Đây là phương trình bậc 2 nên bấm máy tính giải nghiệm đi nha.