K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

 \(f\left(a,b\right)=a^2+8b^2-6ab+14a-40b+48=3\)

\(\Leftrightarrow f\left(a,b\right)=a^2+8b^2-6ab+14a-40b+45=0\)

\(\Leftrightarrow a^2+2a\left(7-3b\right)+\left(8b^2-40b+45\right)=0\)

Xét \(\Delta'=\left(7-3b\right)^2-\left(8b^2-40b+45\right)=b^2-2b+4=\left(b-1\right)^2+3>0\)

Vậy PT luôn có hai nghiệm phân biệt.

Vì a,b nguyên nên \(b^2-2b+4=k^2\left(k\in N\right)\)

\(\Leftrightarrow k^2-\left(b-1\right)^2=3\Leftrightarrow\left(k-b+1\right)\left(k+b-1\right)=3\)

Xét các trường hợp với k-b+1 và k+b-1 là các số nguyên được : 

(b;k) = (0;2) ; (0;-2) ; (2;2) ; (2;-2)

Thay lần lượt các giá trị của b vào f(a,b) = 3 để tìm a.

Vậy : (a;b) = (-9;0) ; (-5;0) ; (-3;2) ; (1;2)