K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

\(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)

\(=x^2+2x+1+y^2+2y+1+2\left(x+1\right)\left(y+1\right)\)

\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+1+y+1\right)^2\)

\(=\left(x+y+2\right)^2\)

17 tháng 7 2021

\(1,=-\left(y^2+12y+36\right)=-y^2-12y-36\)

\(2,=-\left(16-8y+y^2\right)=-16+8y-y^2\)

\(3,=-\left(\dfrac{4}{9}+\dfrac{4}{3}x+x^2\right)=-\dfrac{4}{9}-\dfrac{4}{3}x-x^2\)

\(4,=-\left(x^2-3x+\dfrac{9}{4}\right)=-x^2+3x-\dfrac{9}{4}\)

\(5,-\left(2+3y\right)^2=-\left(4+12y+9y^2\right)=-4-12y-9y^2\)

.... mấy ý còn lại bn tự lm nhé, tương tự thhooi

1) \(-\left(y+6\right)^2=-y^2-12y-36\)

2) \(-\left(4-y\right)^2=-y^2+8y-16\)

3) \(-\left(x+\dfrac{2}{3}\right)^2=-x^2-\dfrac{4}{3}x-\dfrac{4}{9}\)

4) \(-\left(x-\dfrac{3}{2}\right)^2=-x^2+3x-\dfrac{9}{4}\)

5) \(-\left(3y+2\right)^2=-9y^2-12y-4\)

6) \(-\left(2y-3\right)^2=-4y^2+12y-9\)

7) \(-\left(5x+2y\right)^2=-25x^2-20xy-4y^2\)

8) \(-\left(2x-\dfrac{3}{2}\right)^2=-4x^2+6x-\dfrac{9}{4}\)

20 tháng 6 2017

a) \(\left(2x^3-y^2\right)^3\)

\(=\left(2x^3\right)^3-3\cdot\left(2x^3\right)^2\cdot y^2+3\cdot2x^3\cdot\left(y^2\right)^{^2}-\left(y^2\right)^3\)

\(=8x^9-3\cdot4x^6y^2+3\cdot2x^3y^4-y^6\)

\(=8x^9-12x^6y^2+6x^3y^4-y^6\)

b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(x+2y+z\right)\left(x+2y-z\right)\)

\(=\left(x+2y\right)^2-z^2\)

\(=x^2+4xy+4y^2-z^2\)

d) \(\left(2x^3y-0,5x^2\right)^3\)

\(=\left(2x^3y-\dfrac{1}{2}x^2\right)^3\)

\(=8x^9y^3-6x^8y^2+\dfrac{3}{2}x^7y-\dfrac{1}{8}x^6\)

e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)

\(=\left(x^2-3\right)\left(4x^2+9\right)\)

\(=4x^4+9x^2-12x^2-27\)

\(=4x^4-3x^2-27\)

f) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=\left(2x\right)^3-1^3\)

\(=8x^3-1\)

20 tháng 6 2017

\(a,\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)\(b,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)

\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)\(d,\left(2x^3y-0,5x^2\right)^3=8x^9y^3-6x^4y^2x^2+3x^3yx^4-0,125x^6=8x^9y^3-6x^6y^2+3x^7y-0,125x^6\)

1) \(\left(x+1\right)^2=x^2+2x+1\)

2) \(\left(2x+1\right)^2=4x^2+4x+1\)

3) \(\left(2x+y\right)^2=4x^2+4xy+y^2\)

4) \(\left(2x+3\right)^2=4x^2+12x+9\)

5) \(\left(3x+2y\right)^2=9x^2+12xy+4y^2\)

6) \(\left(2x^2+1\right)^2=4x^4+4x^2+1\)

7) \(\left(x^3+1\right)^2=x^6+2x^3+1\)

8) \(\left(x^2+y^3\right)^2=x^4+2x^2y^3+y^6\)

9) \(\left(x^2+2y^2\right)^2=x^4+4x^2y^2+4y^4\)

10) \(\left(\dfrac{1}{2}x+\dfrac{1}{3}y\right)^2=\dfrac{1}{4}x^2+\dfrac{1}{3}xy+\dfrac{1}{9}y^2\)

8 tháng 10 2021

a) \(=4x^2-12x+9\)

b) \(=4x^2+2x+\dfrac{1}{4}\)

c) \(=4x^2-\dfrac{4}{3}x+\dfrac{1}{9}\)

8 tháng 10 2021

d) \(=\left(x^2+2y\right)\left(x^4-2x^2y+4y^2\right)\)

e) \(=\left(3-\dfrac{x}{2}\right)\left(9+\dfrac{3x}{2}+\dfrac{x^2}{4}\right)\)

f) \(=\left(125-4x\right)\left(125^2+500x+16x^2\right)\)

22 tháng 8 2020

a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)

d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)

e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)

f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)

22 tháng 8 2020

a, \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b, \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

e, \(\left(x-y\right)^2\left(x+y\right)^2=x^4-2x^2y^2+y^4\)

18 tháng 11 2021

\(1,=x\left(2x+3\right)-\left(2x+3\right)=2x^2+3x-2x-3=2x^2+x-3\\ 2,=\left(2x\right)^2-2.2.x.1+1^2=4x^2-4x+1\)

18 tháng 11 2021

1. =2x2-2x+3x-3

2. (2x)2-2.2x.1+12

=4x2-4x+1

11 tháng 10 2021

a) \(=x^3+27-54-x^3=-27\)

b) \(=8x^3+y^3\)

4 tháng 9 2020

1) \(\left(\frac{1}{4}+k\right)^2=\frac{1}{16}+\frac{1}{2}k+k^2\)

2) \(\left(2x^2y+\frac{1}{2}xy^2\right)^2=4x^4y^2+2x^3y^3+\frac{1}{4}x^2y^4\) (hẳn đề là như thế này)

3) \(\left(x+\frac{1}{2}y\right)^2=x^2+xy+\frac{1}{4}y^2\)