K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

x3+8y3=x3+(2y)3=(x+2y)(x2-2xy+4y2)

P/s: Mình nghĩ vậy đó.

23 tháng 8 2023

\(7)\)  \(\left(3x\right)^2-y^2=\left(3x-y\right)\left(3x+y\right)\)

\(8)\)  \(x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)

\(9)\)  \(\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)

23 tháng 6 2017

1) \(x^3-1=x^3-1^3=\left(x-1\right)\left(x^2+x+1\right)\)

2) \(27x^3-64=\left(3x\right)^3-4^3=\left(3x-4\right)\left(9x^2+12x+4\right)\)

3) \(8x^3+1=\left(2x\right)^3+1^3=\left(2x+1\right)\left(4x^2-2x+1\right)\)

23 tháng 6 2017

Bài 1 : \(x^3-1=\left(x-1\right)\cdot\left(x^2+x+1\right)\)

Bài 2 : \(27x^3-64=27x^3-4^3=\left(3x-4\right)\cdot\left(9x^2+12x+16\right)\)

Bài 3 : \(8x^3+1=\left(2x+1\right)\cdot\left(4x^2-2x+1\right)\)

  1. Tổng hai lập phương:

  2. Hiệu hai lập phương:

23 tháng 6 2017

1) \(\left(3x-2a\right)^3\)

\(=\left(3x\right)^3-3\left(3x\right)^2\cdot2a+3\cdot3x\cdot\left(2a\right)^2-\left(2a\right)^3\)

\(=27x^3-3\cdot9x^2\cdot2a+3\cdot3x\cdot4a^2-8a^3\)

\(=27x^3-54ax^2+36a^2x-8a^3\)

2) \(\left(\dfrac{x+y}{3}\right)^3\)

\(=\dfrac{\left(x+y\right)^3}{27}\)

\(=\dfrac{x^3+3x^2y+3xy^2+y^3}{27}\)

3) \(\left(3x+\dfrac{y}{3}\right)^3\)

\(=\dfrac{\left(3x+y\right)^3}{27}\)

\(=\dfrac{27x^3+27x^2y+9xy^2+y^3}{27}\)

23 tháng 7 2016

\(\left(1-3x\right)^3=1-9x+27x^2-27x^3\)

23 tháng 7 2016

\(\left(2-3x\right)^3=8-36x+54x^2-27x^3\)

23 tháng 7 2016

\(\left(3-2x\right)^2=9-12x+4x^2\)

14 tháng 5 2017

Ngoài những hằng đẳng thức cơ bản trong sgk, còn có những hằng đẳng thức hay được sử dụng trong các bài toán như sau:

(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac


(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac


(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc


(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)


(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)


(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)


(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)


(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)


(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2


(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc


(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33


(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3


(13) an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1)


(14) Với n lẻ:
an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1)an+bn=(a+b)(an−1−an−2b+an−3b2−...+a2bn−3−abn−2+bn−1)


(15) Nhị thức Newton:
(a+b)n=an+n!(n−1)!1!an−1b+n!(n−2)!2!an−2b2+...+n!(n−k)!k!an−kbk+...+n!2!(n−2)!a2bn−2+n)!1!(n−1)!abn−1+bn

14 tháng 5 2017

Các hằng đẳng thức mở rộng thì nhiều nhưng quan trọng phải nhớ tốt mà biết vận dụng linh hoạt.
(a + b + c)² = a² + b² + c² + 2ab + 2ac + 2bc
(a + b - c)² = a² + b² + c² + 2ab - 2ac - 2bc
(a + b + c + d)² = a² + b² + c² + d² + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd
(a + b + c)³ = a³ + b³ + c³ + 3(a + b)(a + c)(b + c)
a³ + b³ = (a + b)³ - 3ab(a + b)
a³ - b³ = (a - b)³ + 3ab(a - b)
a^n + b^n = (a + b)( a^(n - 1) - a^(n - 2)b + ... + b^(n - 1) )
a^n - b^n = (a - b)( a^(n - 1) + a^(n - 2)b + ....+b^(n - 1) )
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - ac - bc)

a: \(=3x+y-z-4x+2y-6z=-x+3y-7z\)

b: \(=x^3+6x^2+5y^3-2x^3+5x-7y^3=-x^3+6x^2+5x-2y^3\)

c: \(=5.7x^2y-3.1xy+8y^3-6.9xy+2.3x^2y+8y^3\)

\(=8x^2y-10xy+16y^3\)

19 tháng 1 2016

(a + b)n = nC0an + nC1an − 1b + nC2an − 2b2 + nC3an − 3b3 + ... + nCnbn
Đã nghĩ ra 
Nhờ công thức tổ hợp và chỉnh hợp lớp 11
 

13 tháng 4 2016

( x + y )5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + b5