Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{1}{2}QU\)
Công tổng cộng để tích điện cho tụ từ trạng thái ban đầu đến khi có điện tích Q là năng lượng được dự trữ trong tụ điện dưới dạng năng lượng điện trường.
Và Q=CU nên thay vào công thức trên ta thu được:
\(W=\dfrac{1}{2}QU=\dfrac{1}{2}CU^2=\dfrac{Q^2}{2C}\)
Hiệu điện thế UMN bằng độ biến thiên thế năng từ M đến N: UMN = VM - VN
\({V_{MN}} = \frac{{{A_{MN}}}}{q}\) ⇒ ANM = (VM−VN)q = UMN.q
Độ biến thiên động năng bằng công của lực điện trường:
\({W_d} - {W_{d0}} = A \Rightarrow \frac{1}{2}m{v^2} - 0 = {q_e}Ed \Rightarrow v = \sqrt {\frac{{2{q_e}Ed}}{m}} \)
Tham khảo:
Từ công thức \(I=\dfrac{\Delta q}{\Delta t}\), ta thấy cường độ dòng điện được định nghĩa thông qua tỉ số giữa điện lượng dịch chuyển qua tiết diện thẳng và khoảng thời gian để thực hiện sự dịch chuyển đó.
Trong chương trình môn Khoa học tự nhiên 8, các em đã được học đơn vị của cường độ dòng điện trong hệ SI (A) đơn được chọn là đơn vị cơ bản, do đó đơn vị của điện tích (C) được định nghĩa lại như sau: 1 culông (1 C) là điện lượng chuyển qua tiết diện thẳng của dây dẫn trong 1 s khi có dòng điện không đổi cường độ 1 A chạy qua.
1C= 1A.1s = 1As
Nhiệt lượng của đoạn mạch tỏa ra khi có dòng điện chạy qua là: Q=UIt
Mà: \(R=\dfrac{U}{I}\Rightarrow Q=I^2Rt=\dfrac{U^2}{R}\cdot t\)
Độ lớn cường độ điện trường tại 1 điểm:
\(E=k\dfrac{\left|Q\right|}{r^2}\)
Lực điện tác dụng lên một đơn vị điện tích đặt tại điểm đó:
\(E=\dfrac{F}{q}=\dfrac{k\dfrac{\left|Q\cdot q\right|}{r^2}}{q}=k\dfrac{\left|Q\right|}{r^2}\)
Chứng tỏ: Độ lớn cường độ điện trường tại một điểm bằng độ lớn của lực điện tác dụng lên một đơn vị điện tích đặt tại điểm đó.
Từ các công thức (13.5), (13.6) và (13.7), ta có:
\(U_{AB}=V_A-V_B=\dfrac{A_{A\infty}}{q}-\dfrac{A_{B\infty}}{q}=\dfrac{A_{A\infty}-A_{B\infty}}{q}\)
Mà: \(A_{A\infty}=A_{AB}+A_{B\infty}\)
\(\Rightarrow U_{AB}=\dfrac{A_{AB}+A_{B\infty}-B_{B\infty}}{q}=\dfrac{A_{AB}}{q}\)