Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương của phép chia số a cho 18, cho 22 lần lượt là q1, q2 (q1,q2 E N.
Theo đề bài ta có :
a= 18q1+17 (1)
a = 22q2+16 (2)
Theo (1) thì a là số lẻ, nhưng theo ( 2) thì a lại là số chẵn.Đó là điều vô lí. Vậy Nam làm sai ít nhất một trong 2 phép chia.
\(\sqrt{\sqrt[]{}\frac{ }{ }\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\frac{ }{ }^{ }\orbr{\begin{cases}\\\end{cases}}_{ }\xrightarrow[]{}\cos\Rightarrow\gamma}\)
Đố các bạn công thức gì nào
Từ 2000 đến 2020 chỉ có ba số nguyên tố là 2003,2011,2017: Vì các số đó chỉ chia cho 1 và chính nó còn các số khác là chúng chia hết cho 2 Ước trở lên
Học toán với OnlineMathGọi thương của phép chia số a cho 18, cho 22 lần lượt là q1, q2 (q1,q2 E N.
Theo đề bài ta có :
a= 18q1+17 (1)
a = 22q2+16 (2)
Theo (1) thì a là số lẻ, nhưng theo ( 2) thì a lại là số chẵn.Đó là điều vô lí. Vậy Nam làm sai ít nhất một trong 2 phép chia.
Gọi thương của phép chia số a cho 18, cho 22 lần lượt là q1, q2 (q1,q2 E N.
Theo đề bài ta có :
a= 18q1+17 (1)
a = 22q2+16 (2)
Theo (1) thì a là số lẻ, nhưng theo ( 2) thì a lại là số chẵn.Đó là điều vô lí. Vậy Nam làm sai ít nhất một trong 2 phép chia.
Gọi số tự nhiên đó là \(n\).
\(n=16p+3\)suy ra \(n\)là số lẻ.
\(n=18q+4\)suy ra \(n\)là số chẵn.
Mâu thuẫn.
Do đó trong hai bạn có ít nhất một bạn làm sai.