K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 11 2021

c) \(P=\frac{5}{x}+\frac{6}{y}+\frac{128}{6x+5y}=\frac{6x+5y}{xy}+\frac{128}{6x+5y}\ge2\sqrt{\frac{6x+5y}{xy}.\frac{128}{6x+5y}}=16\)

Dấu \(=\)khi \(\hept{\begin{cases}xy=2\\\left(6x+5y\right)^2=256\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1,y=2\\x=\frac{5}{3},y=\frac{6}{5}\end{cases}}\).

d) \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{t^2}{t-3}=P\)

(với \(t=a+b+c>3\)

\(P\left(t-3\right)=t^2\Leftrightarrow t^2-Pt+3P=0\)(1)

Để phương trình (1) có nghiệm thì: 

\(\Delta=P^2-12P\ge0\Leftrightarrow\orbr{\begin{cases}P\ge12\\P\le0\end{cases}}\Rightarrow P\ge12\)(do \(t>3\)nên \(P>0\)

Ta có đpcm. 

c: Ta có: \(\dfrac{\sqrt{x}-10}{\sqrt{x}+2}\ge-2\)

\(\Leftrightarrow\sqrt{x}-10+2\left(\sqrt{x}+2\right)\ge0\)

\(\Leftrightarrow3\sqrt{x}\ge6\)

hay \(x\ge4\)

Bài 9:

c) Ta có: \(P=\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}\)

\(=a+\sqrt{a}+1\)

d) Ta có: \(Q=\dfrac{a\sqrt{a}+1}{\sqrt{a}+1}\)

\(=\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}+1}\)

\(=a-\sqrt{a}+1\)

31 tháng 12 2023

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)EB tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>BF\(\perp\)FC tại F

=>BF\(\perp\)AC tại F

Xét ΔABC có

BF,CE là các đường cao

BF cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại D

Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp đường tròn đường kính AH

tâm K là trung điểm của AH

b:

Ta có: OE=OC

=>ΔOEC cân tại O

=>\(\widehat{OEC}=\widehat{OCE}\)

Ta có: ΔKHE cân tại K

=>\(\widehat{KEH}=\widehat{KHE}\)

 \(\widehat{KEO}=\widehat{KEC}+\widehat{OEC}\)

\(=\widehat{OCE}+\widehat{KHE}\)

\(=\widehat{ECB}+\widehat{DHC}=90^0\)

=>KE là tiếp tuyến của (O)

Xét ΔKEO và ΔKFO có

KE=KF

EO=FO

KO chung

Do đó: ΔKEO=ΔKFO

=>\(\widehat{KEO}=\widehat{KFO}=90^0\)

Ta có: \(\widehat{KEO}=\widehat{KFO}=\widehat{KDO}=90^0\)

=>K,E,O,F,D cùng thuộc đường tròn đường kính KO(ĐPCM)

 

a: Ta có: \(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\)

\(=5\sqrt{3}+\dfrac{4}{3}\sqrt{3}+3\sqrt{6}+6\sqrt{3}\)

\(=\dfrac{37}{3}\sqrt{3}+3\sqrt{6}\)

c: Ta có: \(\left(\sqrt{12}+2\sqrt{27}\right)\cdot\dfrac{\sqrt{3}}{2}-\sqrt{150}\)

\(=\left(2\sqrt{3}+6\sqrt{3}\right)\cdot\dfrac{\sqrt{3}}{2}-5\sqrt{6}\)

\(=12-5\sqrt{6}\)

19 tháng 8 2021

Chị ơi không giải BDEF HỘ EM HẢ ;-;?

 

16 tháng 7 2021
ext-9bosssssssssssssssss
30 tháng 11 2021

c: Thay P=-4 vào P, ta được:

\(-\sqrt{x}=-4x-4\sqrt{x}-4\)

\(\Leftrightarrow4x+3\sqrt{x}+4=0\)

 

30 tháng 11 2021

đến đó xong chưa ạ

30 tháng 11 2021

??

1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:

\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)

Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)

2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)

11 tháng 5 2021

câu 3 chứ