Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Kẻ $AH\perp DC$ thì theo tính chất hình thang cân thì:
$DH=(DC-AB):2=(11-5):2=3$ (cm)
Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ADC$:
$AD^2=DH.DC=3.11=33$
$\Rightarrow AD=\sqrt{33}$ (cm)
Bài 2: Từ A kẻ H, từ B kẻ K
Suy ra: AB=HK=10cm
=> BH=KC=\(\frac{26-10}{2}=8\)cm
=> BH=8 và HC= 10+8=18
=> AH2= HB.HC=8.18 <=>AH= 12
=> S= \(\frac{10+26}{2}.12=216\) cm2
Bài 1: \(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Leftrightarrow BC=\sqrt{5^2+12^2}=13\)
Suy ra: BM=MC=BC/2=6,5
\(\Rightarrow MN^2=NC^2-MC^2\) (Tam giác MNC vuông tại M)
\(\Leftrightarrow MN=\sqrt{12^2-6,5^2}=\frac{\sqrt{407}}{2}\)
Mik ghi ý th, bạn tự giải chi tiết nha
a)Vẽ BE//AD,BH vuông góc CD.
CM đc ABED là hình bình hành => DE=2,EC=4
Tam giác BEC vuông tại B và có góc C =30 nên BE=EC:2=4:2=2
=>AD=BE=2
b)
Tam giác BEH vuông tại H có EBH=30 =>EH=BE/2=2:2=1
Dùng định lý PTG ta tính đc đường cao rồi tính đc diện tích nha.
Dựng hình bình hành ABPC. Khi đó \(AD=AB+CD=CP+CD=DP\)
Ta có \(\dfrac{AB}{FE}=\dfrac{DA}{DF}\), \(\dfrac{CD}{FE}=\dfrac{DA}{AF}\)
\(\Rightarrow\dfrac{AB+CD}{FE}=DA\left(\dfrac{1}{DF}+\dfrac{1}{AF}\right)\)
\(\Rightarrow\dfrac{1}{FE}=\dfrac{DA}{DF.AF}\) \(\Rightarrow\dfrac{DF}{FE}=\dfrac{DP}{FA}\) \(\Rightarrow\dfrac{DF}{DC}=\dfrac{DP}{DA}=1\)
Từ đó \(\Delta DFC\) cân tại D. \(\Rightarrow\widehat{DFC}=\widehat{DCF}=\widehat{CFE}\) \(\Rightarrow\) FC là tia phân giác của \(\widehat{DFE}\). CMTT, FB là tia phân giác của \(\widehat{AFE}\). Do đó \(\widehat{BFC}=90^o\) (đpcm)