Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
a)
- Ta xác định trung điểm 1 cạnh bằng cách gấp sao cho 2 đỉnh của tam giác trùng nhau, khi đó giao của nét gấp đi qua 1 cạnh của tam giác sẽ là trung điểm của cạnh đó
- Rồi từ các trung điểm vừa xác định được ta kẻ các đường trung tuyến của tam giác từ các đỉnh
- Nhận xét : Ta thấy 3 đường trung tuyến trong tam giác này đều sẽ đi qua 1 điểm
b)
- Ta nối dài đoạn AG sao cho AG cắt BC tại 1 điểm
- Ta thấy điểm giao nhau giữa AG và BC chính là trung điểm của BC
- Nên AG là trung tuyến của tam giác ABC
- Ta sẽ sử dụng số đo dựa trên các ô để xét tỉ số giữa các đoạn thẳng
\(\dfrac{{BG}}{{BE}} = \dfrac{2}{3};\dfrac{{CG}}{{CF}} = \dfrac{4}{6};\dfrac{{AG}}{{AD}} = \dfrac{{4.4}}{{6.6}}\)
- Ta thấy sau khi rút gọn các tỉ số ta có :
\(\dfrac{{BG}}{{BE}} = \dfrac{{CG}}{{CF}} = \dfrac{{AG}}{{AD}} = \dfrac{2}{3}\)
b: Gọi O là điểm nằm trên đường trung trực của AB
=>OH⊥AB tại H
=>H là trung điểm của AB
Xét ΔOHA vuông tại H và ΔOHB vuông tại H có
OH chung
HA=HB
Do đó: ΔOHA=ΔOHB
Suy ra: OA=OB
\(\text{13, Gấp sao cho điểm A trùng điểm B}\)
\(\text{14, Vẽ đường thẳng vuông góc với CD mà đi qua trung điểm CD là oke}\)
- Kẻ AH ⊥ a kéo dài HA cắt b tại B
- Kẻ AK ⊥ b kéo dài KA cắt a tại C
- Nối BC
- Kẻ AI ⊥ BC, đường thẳng AI đi qua O
Chứng minh:
Vì tam giác OBC có hai đường cao BH và CK cắt nhau tại A nên A là trực tâm của tam giác OBC.
Khi đó OA là đường cao thứ ba nên OA ⊥ BC.
Lại có: AI ⊥ BC nên đường thẳng OA và đường thẳng AI trùng nhau ( vì qua 1 điểm nằm ngoài 1 đường thẳng ta vẽ được một và chỉ một đường thẳng vuông góc với đường thẳng cho trước).
Suy ra: đường thẳng AI đi qua O.
Gọi giao điểm của AB và xy là O
\( \Rightarrow \) O là trung điểm AB (Do xy là đường trung trực của AB)
\( \Rightarrow \) Đo khoảng cách AO và từ điểm O kẻ OB sao cho OA = OB và nằm khác phía với điểm A so với đường thẳng xy (A, B, O thẳng hàng)