Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
a2+b2+c2+42 = 2a+8b+10c
<=> a2-2a+1+b2 -8b+16+c2-10c+25=0
<=> (a-1)2+(b-4)2+(c-5)2=0
<=>a=1 và b=4 và c=5
=> a+b+c = 10
ta có 2(a2+b2)=5ab
<=> 2a2+2b2-5ab=0
<=> 2a2-4ab-ab+2b2=0
<=> 2a(a-2b)-b(a-2b)=0
<=> (a-2b)(2a-b)=0
<=> a=2b(thỏa mãn)
hoặc b=2a( loại vì a>b)
với a=2b =>P=5b/5b=1
Oh, giống tôi quá, bạn cũng thích sưu tầm danh ngôn tâm trạng à ?
câu 14 : chọn đáp án \(B\) vì \(\left|\overrightarrow{b}\right|=\sqrt{\left(1\right)^2+\left(-1\right)^2}=\sqrt{2}\ne0\)
câu 18 : ta có tọa độ trọng tâm \(G\) của tam giác \(ABC\)
là \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_G=\dfrac{2+3-7}{3}\\y_G=\dfrac{1-1+3}{3}\end{matrix}\right.\) \(\left\{{}\begin{matrix}x_G=\dfrac{-2}{3}\\y_G=1\end{matrix}\right.\)
vậy tọa độ trọng tâm \(G\) là \(G\left(\dfrac{-2}{3};1\right)\) \(\Rightarrow\) chọn đáp án \(B\)
câu 19 : đặt tọa độ của điểm \(D\) là \(D\left(x_D;y_D\right)\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-7\right)\\\overrightarrow{DC}=\left(4-x_D;3-y_D\right)\end{matrix}\right.\)
ta có \(ABCD\) là hình bình hành \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\Leftrightarrow\left\{{}\begin{matrix}1=4-x_D\\-7=3-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=3\\y_D=10\end{matrix}\right.\)
vậy tọa độ điểm \(D\) là \(D\left(3;10\right)\) \(\Rightarrow\) chọn đáp án \(A\)
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
DO đó; OM là tia phân giác của góc AOB
Xét ΔOAM vuông tại A có
\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOB}=120^0\)
b: x/y=1/4
nen 4x=y
=>y=4x
c: x/y=5/4
nên x/5=y/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{x+y}{5+4}=\dfrac{18}{9}=2\)
Do đó: x=10; y=8
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{2x+5y}{2\cdot3+5\cdot4}=\dfrac{10}{26}=\dfrac{5}{13}\)
Do đó: x=15/13; y=20/13
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{-1}=\dfrac{3y}{3}=\dfrac{-2x+3y}{1+3}=\dfrac{7}{4}\)
Do đó: 2x=-7/4; y=7/4
=>x=-7/8; y=7/4
Câu 21b :
\(\sqrt{2x+7}=x+2\)ĐKXĐ : \(x\ne-\frac{7}{2}\)
bình phương 2 vế ta được :
\(2x+7=x^2+4x+4\)
\(\Leftrightarrow-x^2-2x+3=0\)
Ta có : \(4+12=16>0\)vay phương trình có 2 nghiệm phân biệt
\(x_1=\frac{2-\sqrt{16}}{-2}=\frac{2-4}{-2}=1\)
\(x_2=\frac{2+\sqrt{16}}{-2}=\frac{2+4}{-2}=-3\)( ktm )
Vậy \(x=1\)
Điều kiện xác định sai ây :> \(x\ge-2\)