K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

DO đó; OM là tia phân giác của góc AOB

Xét ΔOAM vuông tại A có 

\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)

nên \(\widehat{AOM}=60^0\)

=>\(\widehat{AOB}=120^0\)

NV
19 tháng 3 2022

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+61x\ge0\\4x+2\ge0\\x^2+61x\le\left(4x+2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge0\\x\le-61\end{matrix}\right.\\x\ge-\dfrac{1}{2}\\15x^2-45x+4\ge0\end{matrix}\right.\)

 \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\ge\dfrac{45+\sqrt{1785}}{30}\\x\le\dfrac{45-\sqrt{1785}}{30}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}0\le x\le\dfrac{45-\sqrt{1785}}{30}\\x\ge\dfrac{45+\sqrt{1785}}{30}\end{matrix}\right.\)

5: ĐKXĐ: \(\left\{{}\begin{matrix}x^2+3x-4>=0\\2x^2-2x>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+4\right)\left(x-1\right)>=0\\2x\left(x-1\right)>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=1\\x< =-4\end{matrix}\right.\\\left[{}\begin{matrix}x>=1\\x< =0\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x>=1\\x< =-4\end{matrix}\right.\)

\(\sqrt{x^2+3x-4}< \sqrt{2x^2-2x}\)

=>\(x^2+3x-4< 2x^2-2x\)

=>\(2x^2-2x-x^2-3x+4>0\)

=>\(x^2-5x+4>0\)

=>(x-1)(x-4)>0

=>\(\left[{}\begin{matrix}x>4\\x< 1\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được:

\(\left[{}\begin{matrix}x>4\\x< =-4\end{matrix}\right.\)

7: ĐKXĐ: x>=-1

\(2\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)

=>\(2\cdot\sqrt{x+1+2\sqrt{x+1}+1}-\sqrt{x+1}=4\)

=>\(2\cdot\sqrt{\left(\sqrt{x+1}+1\right)^2}-\sqrt{x+1}=4\)

=>\(2\left(\sqrt{x+1}+1\right)-\sqrt{x+1}=4\)

=>\(\sqrt{x+1}+2=4\)

=>\(\sqrt{x+1}=2\)

=>x+1=4

=>x=3(nhận)

1: (x-1)^2+(y+2)^2=25

=>R=5; I(1;-2)

2: Δ'//Δ nên Δ': 3x-4y+c=0

d(I;Δ')=5

=>\(\dfrac{ \left|3\cdot1+\left(-2\right)\cdot\left(-4\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=5\)

=>|c+11|=25

=>c=14 hoặc c=-36

=>3x-4y+14=0 hoặc 3x-4y-36=0

3x-4y+14=0 

=>VTPT là (3;-4) và (Δ') đi qua A(2;5)

=>VTCP là (4;3)

=>PTTS là x=2+4t và y=5+3t

3x-4y-36=0

=>VTPT là (3;-4) và (Δ') đi qua B(0;-9)

=>VTCP là (4;3)

PTTS là x=0+4t và y=-9+3t

 

1: vecto AC=(-1;-7)

=>VTPT là (-7;1)

PTTS là:

x=3-t và y=6-7t

Phương trình AC là:

-7(x-3)+1(y-6)=0

=>-7x+21+y-6=0

=>-7x+y+15=0

2: Tọa độ M là:

x=(3+2)/2=2,5 và y=(6-1)/2=2,5

PTTQ đường trung trực của AC là:

-7(x-2,5)+1(y-2,5)=0

=>-7x+17,5+y-2,5=0

=>-7x+y+15=0

3: \(AB=\sqrt{\left(-1-3\right)^2+\left(3-6\right)^2}=5\)

Phương trình (A) là:

(x-3)^2+(y-6)^2=AB^2=25

 

25 tháng 3 2023

Dạ em cảm ơn ạ 

 

1: vecto AC=(-2;2)

=>VTCP là (-2;2); vtpt là (2;2)

2: vecto AB=(-10;-2)=(5;1)

=>VTPT của Δ là (5;1)

vtcp của Δ là (-1;5)

NV
6 tháng 3 2023

\(\overrightarrow{AC}=\left(-2;2\right)=2\left(-1;1\right)\) nên đường thẳng AC nhận \(\left(-1;1\right)\) là 1 vtcp và \(\left(1;1\right)\) là 1 vtpt

b.

\(\overrightarrow{BA}=\left(10;2\right)=2\left(5;1\right)\) ; mà \(\Delta\perp AB\) nên \(\Delta\) nhận (5;1) là 1 vtpt và \(\left(1;-5\right)\) là 1 vtcp

NV
14 tháng 9 2021

\(B_2=\left\{x;x=2k,k\in N\right\}\)

\(B_4=\left\{x;x=4m,m\in N\right\}\)

Do \(4m=2.\left(2m\right)\Rightarrow B_4\subset B_2\)

\(\Rightarrow B_2\cap B_4=B_4\)