K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Vì ABCD là hình vuông nên BC = CD ( tính chất)

* Với M nằm trên cạnh BC, ta xét 2 trường hợp sau:

+) M khác B

AB là đường vuông góc kẻ từ A đến BC; AM là đường xiên kẻ từ A đến BC nên AB < AM ( đường vuông góc luôn nhỏ hơn đường xiên). Do đó, AM lớn hơn độ dài cạnh của hình vuông

+) M trùng B:

AM = AB. Do đó, AM bằng độ dài cạnh của hình vuông

Trường hợp M nằm trên cạnh CD tương tự.

Vậy độ dài đoạn thẳng AM luôn lớn hơn hoặc bằng độ dài cạnh của hình vuông đó.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Đường vuông góc kẻ từ A đến BC là: AB

Đường xiên kẻ từ A đến BC là: AM

b) AB < AM (Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.)

c) Vì CB \( \bot \) AB nên khoảng cách từ C đến AB là độ dài CB =  2 cm

19 tháng 9 2023

+) TH1:

M nằm giữa H và N:

Vì góc AMN là góc ngoài tại đỉnh M của tam giác AHM nên  hay  là góc tù.

Xét tam giác AMN có  là góc tù nên là góc lớn nhất trong tam giác. Cạnh AN đối diện với  nên là cạnh lớn nhất trong tam giác ( định lí)

Vậy AM < AN

+) TH2:

H nằm giữa M và N:

Lấy điểm M’ trên d sao cho HM’ = HM. Ta được AH là đường trung trực của đoạn thẳng MM’ nên AM = AM’ ( tính chất đường trung trực của đoạn thẳng)

Hơn nữa, AM’ < AN ( theo trường hợp 1)

AM < AN

Vậy AM < AN.

b)

Theo câu a, khi M thay đổi trên BC, M càng xa B thì AM càng lớn. Khi M trùng C thì M xa B nhất nên khi đó AM là lớn nhất.

20 tháng 3 2016

Nếu :  ∆ABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB;

AM ≤ AC

+ Nếu M  ≡ A hoặc M  ≡  B ( Kí hiệu đọc là trùng với) thì AM = AB, AM = AC.

+ Nếu M nằm giữa B và C; ( M ≢  B , C). Gọi H là trung điểm của BC, mà ∆ABC cân tại A nên AH ⊥ BC

+ Nếu M ≡ H => AM ⊥ BC => AM < AB và AM < AC

+ Nếu M ≢ K giả sử M nằm giữa H và C=> MH < CH

Vì MN và CH là hình chiếu MA và CA trên đường BC nên MA < CA => MA < BA

Chứng minh tương tự nếu M nằm giữa H và B thì MA < AB, MA < AC

Vậy mọi giá trị của M trên cạnh đáy BC thì AM ≤  AB, AM ≤ AC

5 tháng 8 2017

Giả sử   ∆ABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB;

AM ≤ AC

+ Nếu M  ≡ A hoặc M  ≡  B ( Kí hiệu đọc là trùng với) thì AM = AB, AM = AC.

+ Nếu M nằm giữa B và C; ( M ≢  B , C). Gọi H là trung điểm của BC, mà ∆ABC cân tại A nên AH ⊥ BC

+ Nếu M ≡ H => AM ⊥ BC => AM < AB và AM < AC

+ Nếu M ≢ K giả sử M nằm giữa H và C=> MH < CH

Vì MN và CH là hình chiếu MA và CA trên đường BC nên MA < CA => MA < BA

Chứng minh tương tự nếu M nằm giữa H và B thì MA < AB, MA < AC

Vậy mọi giá trị của M trên cạnh đáy BC thì AM ≤  AB, AM ≤  AC

25 tháng 4 2020

\(\theta\eta\delta∄\underrightarrow{ }\overrightarrow{ }|^{ }_{ }\orbr{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\frac{ }{ }\sqrt[]{}\sqrt{ }\forall\)

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Ta có: \({S_{ABCD}} = 4.{S_{AEB}}\) = 4. \(\frac{1}{2}.1.1\) = 2 (m2)

b) AB = \(\sqrt {S{}_{ABCD}}  = \sqrt 2 \) (m)

a: AC=DB=2m

S ABCD=1/2*2*2=2m2

b: AB=căn 1^2+1^2=căn 2(m)

4 tháng 4 2021

a)AM≥AH vì AM là đường xiên

AM≤AB vì hình chiếu của AM ≤ hình chiếu của AB

b)vị trí của AM để đạt giá trị nhỏ nhất: trùng với điểm H vì đường vuông góc là đường ngắn nhất,để đạt giá trị lon nhất:trùng với điểm C hoặc B vì HB và HC là 2 hình chiếu lớn nhất

23 tháng 5 2016

a) Chứng minh rằng trong một tam giác, một góc sẽ là nhọn, vuông hay tù tùy theo cạnh đối diện với góc đó nhỏ hơn hay bằng hay lớn hơn hai lần đường trung tuyến kẻ tới cạnh đó

b) cho một tam giác có độ dài các cạnh là a,b,c đồng thời a-b=b-c. Điểm M là giao điểm của hai trung tuyến, P là giao điểm của các đường phân giác của góc trong tam giác đã cho. Chứng minh rằng MP song song với cạnh có độ dài bằng 

ch mik mk ich lại nha !!!

23 tháng 5 2016

ý bạn là sao?????