Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5(9x-7)-39x=3(7-6x)
45x-35-39x=21-18x
VT=6x-35
pt trở thành 6x-35=21-18x
=>24x=56
=>x=\(\frac{7}{3}\)
`#3107.101107`
a)
`A + B =` \(x^2+5xy-3y^2\)\(+ 2x^2-3xy+11y^2\)
`= (x^2 + 2x^2) + (5xy - 3xy) + (-3y^2 + 11y^2)`
`= 3x^2 + 2xy + 8y^2`
b)
\((9x^3y^2-12x^2y+15xy) \div (3xy)\)
`= 9x^3y^2 \div 3xy - 12x^2y \div 3xy + 15xy \div 3xy`
`= 3x^2y - 4x + 5`
a ) \(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow x^2+2-y\left(x-1\right)=0\)
\(\Leftrightarrow x^2-1-y\left(x-1\right)+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-y\left(x-1\right)=-3\)
\(\Leftrightarrow\left(x-1\right)\left(x+1-y\right)=-3\)
...
b ) \(3xy-5x-2y=3\)
\(\Leftrightarrow9xy-15x-6y=9\)
\(\Leftrightarrow9xy-15x-6y+10=19\)
\(\Leftrightarrow3y\left(3x-2\right)-5\left(3x-2\right)=19\)
\(\Leftrightarrow\left(3y-5\right)\left(3x-2\right)=19\)
...
c ) \(x^2-10xy-11y^2=13\)
\(\Leftrightarrow x^2-11xy+xy-11y^2=13\)
\(\Leftrightarrow x\left(x-11y\right)+y\left(x-11y\right)=13\)
\(\Leftrightarrow\left(x+y\right)\left(x-11y\right)=13\)
...
d ) \(xy-2=2x+3y\)
\(\Leftrightarrow xy-2-2x-3y=0\)
\(\Leftrightarrow y\left(x-3\right)-2\left(x-3\right)-8=0\)
\(\Leftrightarrow\left(y-2\right)\left(x-3\right)=8\)
...
e ) \(5xy+x+2y=7\)
\(\Leftrightarrow5xy+x+2y-7=0\)
\(\Leftrightarrow5x\left(y+\dfrac{1}{5}\right)+2\left(y+\dfrac{1}{5}\right)-\dfrac{37}{5}=0\)
\(\Leftrightarrow\left(5x+2\right)\left(y+\dfrac{1}{5}\right)=\dfrac{37}{5}\)
\(\Leftrightarrow\left(5x+2\right)\left(5y+1\right)=37\)
...
P/s : Vì bài dài nên việc tìm x , y ( lập bảng ) bạn tự làm nhé
Thanks
a) P = \(x^2+3x+y^2-3y-2xy+90\)
= \(\left(x-y\right)^2+3\left(x-y\right)+90\)
= \(5^2+3.5+90=130\)
b) P = \(4x^2+9y^2-12xy-12x+24xy-18y+118\)
= \(4x^2+9y^2+12xy-12x-18y+118\)
= \(\left(2x+3y\right)^2-6\left(2x+3y\right)+118\)
= \(\left(-7\right)^2-6.\left(-7\right)+118=209\)
a) \(\frac{9x^2}{11y^2}:\frac{6x}{11y}=\frac{9x^2}{11y^2}\cdot\frac{11y}{6x}=\frac{3xy}{2}\)
b) \(\frac{x^2-49}{x-7}+x-2=\frac{\left(x-7\right)\left(x+7\right)}{x-7}+x-2=x+7+x-2=2x+5\)
c) \(\frac{3}{x+3}+\frac{1}{x-3}-\frac{18}{9-x^2}\)
= \(\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{1\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{18}{\left(3-x\right)\left(x+3\right)}\)
= \(\frac{3x-9}{\left(x-3\right)\left(x+3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{18}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)(đk: \(x-3\ne0\)=> \(x\ne3\))
Ta có
\(x^3-6x^2+x^2y+9x-3y\\ =\left(x^3-6x^2+9x\right)+\left(x^2y-3y\right)\\ =x\left(x^2-3\right)^2+y\left(x^2-3\right)\)
=(x^2-3)(x+y)