Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)
A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)
A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5
A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)
A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21
A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)
A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
\(=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+....+2^{92}\left(1+2+2^2+2^3\right)\)
\(=15+15.2^4+...+15.2^{92}\)
\(=15\left(1+2^4+...+2^{92}\right)⋮15\left(đpcm\right)\)
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
chia hết cho 3
A=(2 mũ 2+2 mũ 3)+(2 MŨ 4+2 mũ 5)+...+(2 mũ 19+2 mũ 20)
A=(2 mũ 2 +2 mũ 3)+2 mũ 2.(2 mũ 2+2 mũ 3)+...+2 mũ 17.(2 mũ 2+2 mũ 3)
A=12+2 mũ 2.12+...+2 mũ 17.12
A=12.(1+2 mũ 2+...+2 mũ 17)
vậy A chia hết cho 3
chia hết cho7
A=(2 mũ 2+2 mũ 3 +2 mũ 4).....(2 mũ 18+2 mũ 19 +2 mũ 20)
A=(2 mũ 2 +2 mũ 3 +2 mũ 4).....2 mũ 16.(2 mũ 2+2 mũ 3+2 mũ 4)
A=28.....2 mũ 16.28
28.(1+...+2 mũ 16)
vậy a .....cho 7
chia hất cho 15
A=(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5).....(2 mũ 17+2 mũ 18+2 mũ 19+2 mũ 20)
A=(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5).....2 mũ 15.(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5)
A=60.....2 mũ 15.60
A=60.(1+...+2 mũ 15)
vậy a........cho 15.
CHÚC BẠN HOK TỐT!
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
Ta có : 1+4+4^2+.............+4^15 có 16 số hạng
Mà 16 : 2 =8
\(\Rightarrow\)(1+4)+(4^2+4^3)+..............+(4^14+4^15)
\(\Rightarrow\)(1+4)+(1+4).4+...........+(1+4)4^13
\(\Rightarrow\)(1+4)(1+4+......+4^13)
\(\Rightarrow\)5(1+4+.....+4^13) \(⋮\)5 (ĐPCM)
Giải:
Theo đề ta có: 1 + 4 + 4^2 +. . . .+ 4^15 có 16 số hạng
Mà 16 : 2 = 8
=> (1 + 4) + (4^2 + 4^3) +. . . .+(4^14 + 4^15)
=> (1 + 4) + (1 + 4) . 4 +. . . .+ (1 + 4) . 4^13
=> (1 + 4) . (1 + 4+. . . .+ 4 ^13)
=> 5 . (1 +4 +. . . .+ 4^13) \(⋮\)5 (điều phải chứng minh)