K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

  • hoa24092001yl

Đáp án:

            Vòi thứ nhất chảy một mình mất 9h9h, vòi thứ hai mất 12h12h thì đầy bể.

Giải thích các bước giải:

 Gọi thời gian vòi thứ nhất và vòi thứ hai chảy một mình để đầy bể lần lượt là x;y(h)(x;y>0)x;y(h)(x;y>0)

Khi đó, mỗi giờ, vòi thứ nhất chảy được 1x1x bế, vòi thứ hai chảy được 1y1y bể.

Theo giả thiết ta có hệ phương trình sau:

{3.1x+8.1y=15.1x+4.1y=89⇔{3.1x+8.1y=110.1x+8.1y=169⇒(10.1x+8.1y)−(3.1x+8.1y)=169−1⇔7.1x=79⇔1x=19⇒1y=112⇒{x=9(h)y=12(h){3.1x+8.1y=15.1x+4.1y=89⇔{3.1x+8.1y=110.1x+8.1y=169⇒(10.1x+8.1y)−(3.1x+8.1y)=169−1⇔7.1x=79⇔1x=19⇒1y=112⇒{x=9(h)y=12(h)

Vậy vòi thứ nhất chảy một mình mất 9h9h, vòi thứ hai mất 12h12h thì đầy bể.

Đáp án:

            Vòi thứ nhất chảy một mình mất 9h9h, vòi thứ hai mất 12h12h thì đầy bể.

Giải thích các bước giải:

 Gọi thời gian vòi thứ nhất và vòi thứ hai chảy một mình để đầy bể lần lượt là x;y(h)(x;y>0)x;y(h)(x;y>0)

Khi đó, mỗi giờ, vòi thứ nhất chảy được 1x1x bế, vòi thứ hai chảy được 1y1y bể.

Theo giả thiết ta có hệ phương trình sau:

{3.1x+8.1y=15.1x+4.1y=89⇔{3.1x+8.1y=110.1x+8.1y=169⇒(10.1x+8.1y)−(3.1x+8.1y)=169−1⇔7.1x=79⇔1x=19⇒1y=112⇒{x=9(h)y=12(h){3.1x+8.1y=15.1x+4.1y=89⇔{3.1x+8.1y=110.1x+8.1y=169⇒(10.1x+8.1y)−(3.1x+8.1y)=169−1⇔7.1x=79⇔1x=19⇒1y=112⇒{x=9(h)y=12(h)

Vậy vòi thứ nhất chảy một mình mất 9h9h, vòi thứ hai mất 12h12h thì đầy bể.

Gọi thời gian vòi thứ nhất chảy một mình đầy bể là x(giờ)(Điều kiện: x>4)

Gọi thời gian vòi thứ hai chảy một mình đẩy bể là y(giờ)(Điều kiện: y>4)

Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)

Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)

Trong 1 giờ, 2 vòi chảy được: \(\dfrac{1}{4}\)(bể)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\)(1)

Theo đề, ta có phương trình: \(\dfrac{9}{x}+\dfrac{1}{y}=1\)(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{9}{x}+\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-8}{x}=\dfrac{-3}{4}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{32}{3}\\\dfrac{1}{y}=\dfrac{1}{4}-\dfrac{3}{32}=\dfrac{5}{32}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{32}{3}\\y=\dfrac{32}{5}\end{matrix}\right.\)(thỏa ĐK)

Vậy: Vòi 1 cần \(\dfrac{32}{3}h\) để chảy một mình đầy bể

Vòi 2 cần \(\dfrac{32}{5}h\) để chảy một mình đầy bể

18 tháng 5 2021

 Gọi thời gian mà vòi thứ nhất và vòi thứu hai chảy một mình đẩy bể lần lượt là x, y (giờ)

Vì hai vòi cùng chảy vào một cái bể không có nước thì trong 12 giờ thì sữ đầy bể nên:

12x+12y=112x+12y=1

Mặt khác, Nếu chỉ mở vòi thứ nhất trong 4h rồi mở vòi thứ 2 chảy trong 6h thì chỉ được hai phần năm bể nên ta có:

4x+6y=254x+6y=25

Suy ra, ta có hệ phương trình:

{12x+12y=14x+6y=25⇔{x=20x=30{12x+12y=14x+6y=25⇔{x=20x=30

Vậy, thời gian mà vòi thứ nhất và vòi thứ hai chảy một mình đẩy bể lần lượt là 20 giờ, 30 giờ

  

Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là a,b

Theo đề, ta có: 1/a+1/b=1/12 và 4/a+18/b=1

=>a=28 và b=21

5 tháng 6 2023

Gọi thời gian vòi một chảy một mình thì đầy bể là \(x\left(x>12\right)\) (giờ)

Thời gian vòi hai chảy một mình thì đầy bể là \(y\left(y>12\right)\) (giờ)

Trong một giờ vòi một chảy được \(\dfrac{1}{x}\) (bể)

Trong một giờ vòi hai chảy được \(\dfrac{1}{y}\) (bể)

Hai vòi cùng chảy vào một bể không có nước thì sau \(12\) giờ thì đầy bể

\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\left(1\right)\)

Người ra mở cả hai vòi chảy trong \(4\) giờ được \(4\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{4}{x}+\dfrac{4}{y}\) bể và để vòi một chảy tiếp trong \(14\) giờ nữa thì vòi một chảy được \(\dfrac{14}{x}\) bể

\(\Rightarrow\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{14}{x}=1\)

\(\Rightarrow\dfrac{18}{x}+\dfrac{4}{y}=1\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) ta có hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{18}{x}+\dfrac{4}{y}=1\end{matrix}\right.\)

Giải hệ phương trình trên ta được \(\left\{{}\begin{matrix}x=21\\y=28\end{matrix}\right.\) (thỏa mãn điều kiện)

Vậy thời gian vòi một chảy một mình thì đầy bể là \(21\) giờ, thời gian vòi hai chảy một mình thì đầy bể là \(28\) giờ.

2 tháng 2 2020

Gọi thời gian chảy một mình để đầy bể của vòi 1 là: x ( x > 0 ) ( giờ )

                                                               vòi 2 là: y ( y > 0 ) ( giờ )

Trong 1 giờ vòi 1 chảy được là: \(\frac{1}{x}\)bể

                      2                 là: \(\frac{1}{y}\)bể

\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}=\frac{6}{35}\)( 1 )

Trong 5 giờ vòi 1 chảy được là: \(\frac{5}{x}\)bể

        7 giờ vòi 2                  là: \(\frac{7}{y}\)bể

\(\Rightarrow\)\(\frac{5}{x}+\frac{7}{y}=1\)( 2 )

Từ ( 1 ) và ( 2 ) ta có phương trình

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{6}{35}\\\frac{5}{x}+\frac{7}{y}=1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=14\end{cases}}\)

Vậy...

25 tháng 6 2017

Gọi thời gian vòi 1 chảy 1 mình đầy bể là x(h), thời gain vòi 2 chảy 1 mình đầy bể là y (h) (x; y > 1,5)

Hai vòi cùng chảy thì sau 1,5h sẽ đầy bể nên ta có phương trình 1 x + 1 y = 2 3 (1)

Nếu mở vòi 1 chảy trong 0,25h rồi khóa lại và mở vòi 2 chảy trong 1/3h thì được 1/5 bể nên ta có:

0 , 25 x + 1 3 y = 1 5    (2)

Từ (1) và (2) ta có hệ phương trình:

1 x + 1 y = 2 3 1 4 x + 1 3 y = 1 5 ⇔ 1 3 x + 1 3 y = 2 9 1 4 x + 1 3 y = 1 5 ⇔ 1 12 x = 1 45 1 x + 1 y = 2 3 12 x = 45 1 x + 1 y = 2 3 ⇔ x = 15 4 = 3 , 75 y = 5 2 = 2 , 5 ( t m d k )

Vậy thời gian 2 vòi chảy 1 mình đầy bể là 2,5h

Đáp án:A

20 tháng 1 2021

Bạn không nên viết tắt nhiều quá. Nó khiến câu hỏi không bắt mắt và người đọc ít hứng thú trả lời.

Gọi thời gian để mỗi vòi chảy đầy bể là $x,y.$ $(h;x,y>0)$

Mỗi giờ hai vòi chảy được lần lượt là \(\dfrac{1}{x},\dfrac{1}{y}\) bể.

Theo đề bài: \(\dfrac{3}{x}+\dfrac{8}{y}=1\)

Như vậy là đề thiếu dữ kiện. Cần thêm một dữ kiện khác ví dụ: hai vòi cùng lúc trong ... thì bể sẽ đầy.

20 tháng 1 2021

Thiếu đề nha bn!