Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bunhiacopxki:
\(\left(a^2+b+c+d\right)\left(1+b+c+d\right)\ge\left(a+b+c+d\right)^2=16\)
\(\Rightarrow\dfrac{1}{a^2+b+c+d}\le\dfrac{1+b+c+d}{16}\)
Tương tự:
\(\dfrac{1}{b^2+c+d+a}\le\dfrac{1+c+d+a}{16}\) ; \(\dfrac{1}{c^2+d+a+b}\le\dfrac{1+d+a+b}{16}\)
\(\dfrac{1}{d^2+a+b+c}\le\dfrac{1+a+b+c}{16}\)
Cộng vế:
\(P\le\dfrac{4+3\left(a+b+c+d\right)}{16}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d=1\)
Nếu trong 4 điểm A, B, C, D không có ba điểm nào thẳng hàng thì ABCD tạo thành tứ giác.
Thêm điều kiện A B → = D C → chứng tỏ hai cạnh AB, CD song song và bằng nhau.
Vậy ABCD là hình bình hành.
Chọn D
Ta có: a x + b = 0 ⇔ x = - b a
Và c x + d = 0 ⇔ x = - d c
Theo giả thiết ta có: - b a < - d c ⇔ b a > d c
a2 + b2 = 4a + 6b - 9
⇔ (a - 2)2 + (b - 3)2 = 4
Đây là phương trình của đường tròn (C) có tâm là I (2;3) và bán kính bằng 2
(d) : 3c + 4d - 1 = là phương trình đường thẳng
Gọi A (a;b) và B (b; d) ⇒ AB = \(\sqrt{\left(a-c\right)^2+\left(b-d\right)^2}\)
Với A nằm trên đường tròn (C) và B nằm trên d
Vẽ đường tròn (C) : (x - 2)2 + (y - 3)2 = 4 và đường thẳng
3x + 4y - 1 = 0 trên cùng một hệ trục tọa độ ta thấy chúng không có điểm chung
Cần tìm tọa độ của A và B để AB đạt Min
Từ I kẻ đường thẳng vuông góc với (d) tại N, cắt đường tròn (C) tại M, ta tìm được tọa độ MN
Do MN là khoảng cách ngắn nhất từ một điểm trên (C) đến (d)
Dấu "=" xảy ra khi A trùng M, B trùng N => a,b,c,d
Đoạn này lười quá nên tự làm nha
Đáp án B