Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc EAH+góc ACB=90 độ
góc EBC+góc ACB=90 độ
=>góc EAH=góc EBC
b: AK cắt EF tại M
AK cắt BC tại N
AH cắt (O) tại K
=>HM//AB và QN//AB
=>HM//QN
a) Trong tứ giác AOBM có = = .
Suy ra cung AMB + =
=> cung AMB= -
= -
=
b) Từ = . Suy ra số đo cung nhỏ AB = và số đo cung lớn AB :
Cung AB = - =
Ta có: (1)
( vì là góc tạo bởi một tiếp tuyến và một dây cung đi qua tiếp điểm A của (O')).
và (2)
góc nội tiếp của đường tròn (O') chắn cung
Từ (1), (2) suy ra
(3)
Chứng minh tương tự với đường tròn (O), ta có:
(4)
Hai tam giác ABD và ABC thỏa (3), (4) suy ra cặp góc thứ 3 của chúng bằng nhau, vậy =
ME^2=MP*MK
=>ME/MK=MP/ME
=>ΔMEK đồng dạng vơi ΔMPE
=>góc MKE=góc PEM
=>góc KEF=góc KPE
góc KAB=góc KFB+góc KEF
=>gócKAF=góc KEF
=>KAEF nội tiếp
=>góc KFE+góc KAE=180 độ
mà góc KQC+góc KAC=180 độ
góc KQF+góc NFK=180 độ
nên góc KQF+góc NFQ+góc QFK=180 độ
màgóc KQF+góc QFK+góc QKF=180 độ
nên góc NFQ=góc QKF
góc NBK=1/2*sđ cung NK=góc KAF=góc AEF
=>NBEK nội tiếp
=>góc NKE+góc NBE=180 độ
góc NFK+góc FKE=góc NKE=180 độ-góc NBE
=>góc NKF=180 độ-góc NBE-góc FKE
=>góc NKF=180 độ-góc BCP-góc FAE
=>góc NKF=góc BAP-góc FAE=góc CAP
mà góc CAP=góc CBP=goc CFE=góc QFN=góc QKF
nên Q,K,N thẳng hàng
a) Ta có là góc có đỉnh ở bên ngoài đường tròn nên:
\(\widehat{AEB}=\dfrac{sđ\left(\widehat{AB}-\widehat{CD}\right)}{2}=\dfrac{180^O-60^O}{2}=60^O\)
và \(\widehat{BTC}\) cũng là góc có đỉnh ở bên ngoài đường tròn ( hai cạnh đều là tiếp tuyến của đường tròn) nên:
\(\widehat{BTC}\) = sđ\(\dfrac{\widehat{BAC}-\widehat{BDC}}{2}=\dfrac{\left(180^O+60^O\right)-\left(60^O+60^O\right)}{2}=60^O\)
Vậy =
b) \(\widehat{DCT}\) là góc tạo bởi tiếp tuyến và dây cung nên:
\(\widehat{DCT}=\dfrac{sđ\widehat{CD}}{2}=\dfrac{60^o}{2}=30^o\)
→ \(\widehat{DCB}\) là góc nội tiếp trên
\(\widehat{DCB}\) = \(\dfrac{sđ\widehat{DB}}{2}\) = \(\dfrac{60^O}{2}=30^O\)
Vậy \(\widehat{DCT}\) = \(\widehat{DCB}\) hay CD là phân giác của \(\widehat{BCT}\)
Chon A