K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

góc EAH+góc ACB=90 độ

góc EBC+góc ACB=90 độ

=>góc EAH=góc EBC

b: AK cắt EF tại M

AK cắt BC tại N

AH cắt (O) tại K

=>HM//AB và QN//AB

=>HM//QN

a) Trong tứ giác AOBM có = = .

Suy ra cung AMB + =

=> cung AMB= -

= -

=

b) Từ = . Suy ra số đo cung nhỏ AB = và số đo cung lớn AB :

Cung AB = - =



11 tháng 4 2017

Ta có: \widehat {CAB} = {1 \over 2}\widehat {AmB} (1)

( vì là góc tạo bởi một tiếp tuyến và một dây cung đi qua tiếp điểm A của (O')).

\widehat {ADB} = {1 \over 2}\widehat {AmB} (2)

góc nội tiếp của đường tròn (O') chắn cung \dpi{100} \widehat {AmB}

Từ (1), (2) suy ra

\dpi{100} \widehat {CAB} = \widehat {ADB} (3)

Chứng minh tương tự với đường tròn (O), ta có:

\dpi{100} \widehat {ACB} = \widehat {DAB} (4)

Hai tam giác ABD và ABC thỏa (3), (4) suy ra cặp góc thứ 3 của chúng bằng nhau, vậy =

ME^2=MP*MK

=>ME/MK=MP/ME

=>ΔMEK đồng dạng vơi ΔMPE

=>góc MKE=góc PEM

=>góc KEF=góc KPE

góc KAB=góc KFB+góc KEF

=>gócKAF=góc KEF

=>KAEF nội tiếp

=>góc KFE+góc KAE=180 độ

mà góc KQC+góc KAC=180 độ

góc KQF+góc NFK=180 độ

nên góc KQF+góc NFQ+góc QFK=180 độ

màgóc KQF+góc QFK+góc QKF=180 độ

nên góc NFQ=góc QKF

góc NBK=1/2*sđ cung NK=góc KAF=góc AEF

=>NBEK nội tiếp

=>góc NKE+góc NBE=180 độ

góc NFK+góc FKE=góc NKE=180 độ-góc NBE

=>góc NKF=180 độ-góc NBE-góc FKE

=>góc NKF=180 độ-góc BCP-góc FAE

=>góc NKF=góc BAP-góc FAE=góc CAP

mà góc CAP=góc CBP=goc CFE=góc QFN=góc QKF

nên Q,K,N thẳng hàng

9 tháng 10 2016

mama mà cũng chịu thua à =))

11 tháng 4 2017

a) Ta có là góc có đỉnh ở bên ngoài đường tròn nên:

\(\widehat{AEB}=\dfrac{sđ\left(\widehat{AB}-\widehat{CD}\right)}{2}=\dfrac{180^O-60^O}{2}=60^O\)

\(\widehat{BTC}\) cũng là góc có đỉnh ở bên ngoài đường tròn ( hai cạnh đều là tiếp tuyến của đường tròn) nên:

\(\widehat{BTC}\) = sđ\(\dfrac{\widehat{BAC}-\widehat{BDC}}{2}=\dfrac{\left(180^O+60^O\right)-\left(60^O+60^O\right)}{2}=60^O\)

Vậy =

b) \(\widehat{DCT}\) là góc tạo bởi tiếp tuyến và dây cung nên:

\(\widehat{DCT}=\dfrac{sđ\widehat{CD}}{2}=\dfrac{60^o}{2}=30^o\)

\(\widehat{DCB}\) là góc nội tiếp trên

\(\widehat{DCB}\) = \(\dfrac{sđ\widehat{DB}}{2}\) = \(\dfrac{60^O}{2}=30^O\)

Vậy \(\widehat{DCT}\) = \(\widehat{DCB}\) hay CD là phân giác của \(\widehat{BCT}\)