K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2x+3y=2

-x-2y=2

=>x=10; y=-6

3x+ky=8; 2x+y=-2

=>30-6k=8 và 2*10-6=-2(loại)

=>Ko có đáp án đúng

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)

1)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(-1;2\right)\)

2)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;2\right)\)

3)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

4) 

HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;2\right)\)

 

21 tháng 3 2020

1) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\8x+3\left(2-4x\right)=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\)

2) 2 pt 3 ẩn không giải được.

3) \(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\3x+2\left(x-2\right)=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

4) \(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+1}{2}\\-4\cdot\frac{3y+1}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)

5) \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-3y+5}{2}\\5\cdot\frac{-3y+5}{2}-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

6) \(\left\{{}\begin{matrix}3x-y=7\\x+2y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x+2\left(3x-7\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

7) \(\left\{{}\begin{matrix}x+4y=2\\3x+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-4y\\3\left(2-4y\right)+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{1}{5}\\x=\frac{6}{5}\end{matrix}\right.\)

8) \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-x-2\\-2x-3\left(-x-2\right)=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)

9) \(\left\{{}\begin{matrix}2x-3y=2\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+2}{2}\\-4\cdot\frac{3y+2}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)

21 tháng 3 2020

Nguyễn Thành Trương 2GP cả công đánh máy nữa nhé.

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

NV
8 tháng 1

e.

\(\left\{{}\begin{matrix}2x-3y+5=0\\3x+5y-21=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y=-25\\9x+15y=63\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}19x=38\\3x+5y=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{21-3x}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

f.

\(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x\sqrt{2}+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y\sqrt{2}=0\\4x+y\sqrt{2}=5\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\sqrt{2}\\2x\sqrt{2}+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=5-2x\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=1\end{matrix}\right.\)

NV
8 tháng 1

a.

\(\Leftrightarrow\left\{{}\begin{matrix}5x=-25\\3x-5y=-30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{3x+30}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}8x-6y=-10\\9x+6y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}17x=-34\\9x+6y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=\dfrac{-24-9x}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

19 tháng 3 2020

a, Ta có : \(\left\{{}\begin{matrix}3x+2y=-2\\-x+4y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3\left(4y-3\right)+2y=-2\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}12y-9+2y=-2\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}14y=7\\x=4y-3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=\frac{1}{2}\\x=\frac{4.1}{2}-3=-1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-1;\frac{1}{2}\right)\)

b, Ta có : \(\left\{{}\begin{matrix}x+2y=11\\5x-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\5\left(11-2y\right)-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\55-10y-3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2y\\-13y=-52\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11-2.4=3\\y=4\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)

c, Ta có : \(\left\{{}\begin{matrix}10x-9y=1\\15x+21y=36\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}30x-27y=3\\30x+42y=72\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10x-9y=1\\-69y=-69\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10x-9=1\\y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(1;1\right)\)

d, Ta có : \(\left\{{}\begin{matrix}2x+y=3\\x+y=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2x\\x+2-2x=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2x\\2-x=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3-2.0=3\\x=0\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(0;3\right)\)

e, Ta có : \(\left\{{}\begin{matrix}x+y=2\\2x-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\2\left(2-y\right)-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\4-2y-3y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2-y\\-5y=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2+1=3\\y=-1\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-1\right)\)

f, Ta có : \(\left\{{}\begin{matrix}x-2y=11\\5x+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\5\left(11+2y\right)+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\55+10y+3y=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=11+2y\\13y=-52\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-4\right)\)

g, Ta có : \(\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\2x+3\left(3x-5\right)=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\2x+9x-15=18\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=3x-5\\11x=33\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=9-5=4\\x=3\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)

h, Ta có : \(\left\{{}\begin{matrix}5x+3y=-7\\3x-y=-8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x+3\left(3x+8\right)=-7\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x+9x+24=-7\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}14x=-31\\y=3x+8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-\frac{31}{14}\\y=3.\left(-\frac{31}{14}\right)+8=\frac{19}{14}\end{matrix}\right.\)

Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-\frac{31}{14};\frac{19}{14}\right)\)

19 tháng 3 2020

...????