K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

\(\left(x+5\right)^4+\left(x+3\right)^4=16\)

Đặt t = x+ 4 pt ban đầu trở thành

\(\left(t+1\right)^4+\left(t-1\right)^4=16\Leftrightarrow t^4+6t^2-7=0\)

PT \(t^2=7\left(vn\right)\)

\(PTt^2=1\) cho ta nghiệm \(t=1;t=-1\)

\(\Rightarrow PT\) ban đầu \(\Leftrightarrow\orbr{\begin{cases}x+4=-1\\x+4=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-3\end{cases}}\)

11 tháng 4 2016

Bạn tự phân tích đa thức thành nhân tử nhé! 

\(1.\)

\(2x^3+x+3=0\)

\(\Leftrightarrow\)  \(\left(x+1\right)\left(2x^2-2x+3\right)=0\)  \(\left(1\right)\)

Vì  \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\)  với mọi  \(x\in R\)

nên từ  \(\left(1\right)\)  \(\Rightarrow\)  \(x+1=0\)  \(\Leftrightarrow\)  \(x=-1\)

11 tháng 4 2016

1)2x^3+x+3=0=>

29 tháng 7 2017

Đặt \(a=3-x, b=2-x \)
=>\(a^4+b^4=(a+b)^4 \)và a-b=1
<=>\(a^4+b^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4 \)
\(a-b=1 \)
<=>\(ab(2a^2+2b^2+3ab)=0 \)
\(a-b=1 \)
Xét \(a=0\), \(\Leftrightarrow b=\pm1\)
\(b=0\), tương đương \(a=+-1 \)
\(2a^2+2b^2+3ab=0\) =>HPt vo nghiem
vậy ta có nghiệm: \(x=2,x=3\)

x=\(\frac{76}{5}\)

đúng thì ****!!

28 tháng 4 2015

\(\frac{48}{x+4}+\frac{48}{x-4}=5\)

\(\Leftrightarrow\frac{48\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{48\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\frac{5\left(x+4\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\)

\(\Rightarrow48\left(x-4\right)+48\left(x+4\right)=5\left(x-4\right)\left(x+4\right)\)

\(\Leftrightarrow48x-192+48x+192-5\left(x+4\right)\left(x-4\right)=0\)

\(\Leftrightarrow96x-5\left(x^2-4\right)=0\)

\(\Leftrightarrow96x-5x^2+20=0\)

Giải phương trình bậc hai tìm x 

9 tháng 2 2019

c)Ta có: \(x^4+3x^3+4x^2+3x+1=0\)

\(\Leftrightarrow x\left(x^3+2x^2+2x+1\right)+1\left(x^3+2x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+2x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)

Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\) nên vô nghiệm

Suy ra x + 1 =0 hay x = -1

9 tháng 2 2019

X=0 hoặc -1

30 tháng 5 2016

(x-7)(x-5)(x-4)(x-2)=72 

<=> (x-7)(x-2)(x-5)(x-4)=72 

<=> (x^2-9x+14)(x^2-9x+20)=72

đặt t=x^2-9x+17 (1)

pt trở thành 

(t-3)(t+3)=72 

<=> t^2-81=0<=> t^2=81<=> t=9 hoặc t=-9 

thế t vào (1)

th1 x^2-9x+17=9

<=> x^2-9x+8=0

giải pt => x=8 hoặc x=1 

th2 x^2-9x+17=-9 

<=> x^2-9x+26=0

giải pt => pt vô nghiệm 

S={8;1}

4 tháng 6 2016

Nguyen Quang Trung copy bài của kagamine rin len trên olm mà đc hoc24  tick là sao>???

23 tháng 5 2016

(x-7)(x-5)(x-4)(x-2)=72

<=> (x-7)(x-2)(x-5)(x-4)=72

<=> (x^2-9x+14)(x^2-9x+20)=72

đặt t=x^2-9x+17 (1)

pt trở thành

(t-3)(t+3)=72

<=> t^2-81=0<=> t^2=81<=> t=9 hoặc t=-9

thế t vào (1)

th1 x^2-9x+17=9

<=> x^2-9x+8=0

giải pt => x=8 hoặc x=1

th2 x^2-9x+17=-9

<=> x^2-9x+26=0

giải pt => pt vô nghiệm 

S={8;1}

23 tháng 5 2016

\(\left(x-7\right)\left(x-2\right)\left(x-5\right)\left(x-4\right)\)
\(\left(x^2-9x+14\right)\left(x^2-9x+20\right)=72\)

Đặt : \(x^2-9x+14=t\left(t>0\right)\)

\(\Rightarrow t\left(t+6\right)-72=0\Rightarrow t_1=6\left(tm\right)'t_2=-12\)(loại)

Với \(t=6\Rightarrow x^2-9x+14=6\)

\(\Rightarrow x_1=8;x_2=1\)

7 tháng 6 2016

Ta có (x-7)(x-2)(x-5)(x-4)=72 
<=> (x2-9x+14)(x2-9x+20)=72 
Đặt x2-9x+14 = t (đk t>0) 
=> t(t+6) - 72 = 0

=> t1=6 (thỏa mãn)  và t2 = -12 (loại) 
Khi t=6 => x2-9x+14 = 6 
=> x= 8 ; x2 = 1

7 tháng 6 2016

\(\left(x-7\right)\left(x-2\right)\left(x-5\right)\left(x-4\right)\)

\(\left(x^2-9x+14\right)\left(x^2-9x+20\right)=72\)

Đặt : \(x^2-9x+14=t\left(t>0\right)\)

\(\Rightarrow t\left(t+6\right)-72=0\Rightarrow t_1=6\left(tm\right)'t_2=-12\left(loại\right)\)

Với : \(t=6\Rightarrow x^2-9x+14=6\)

\(\Rightarrow x_1=8;x_2=1\)

4 tháng 4 2020
https://i.imgur.com/xx70Qb1.jpg
4 tháng 4 2020

Mk nhầm, đề bị sai!!!!