K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

cái đề câu 2 hình như sai pải ko bn

15 tháng 10 2017

c.

(v+1)(1-2x)=-5

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

1. 

PT $\Leftrightarrow 4x^2-4xy+4y^2-16=0$

$\Leftrightarrow (2x-y)^2+3y^2=16$

$\Rightarrow 3y^2=16-(2x-y)^2\leq 16$

$\Rightarrow y^2\leq \frac{16}{3}< 9$

$\Rightarrow -3< y< 3$

Mà $y$ nguyên nên $y\in \left\{-2;-1;0;1;2\right\}$

Thay vô ta tìm được:

$(x,y)=(-2, -2), (0,-2), (0,2), (2,0), (-2,0)$

2.

PT $\Leftrightarrow 13y^2=20412$

$\Leftrightarrow y^2=\frac{20412}{13}\not\in\mathbb{N}$ (vô lý)

a, Khi \(x = 0 ⇔ 0! + y! = y! ⇔ \) Vô lý.

\(\rightarrow x \ne y\)\(\ne 0\)

Khi \(x = y \rightarrow 2 . x! = (2x)! \rightarrow 2x! = x(x+1)(x+2)...(2x)=>x(x+1)(x+2)...(2x) = 2 \rightarrow x = y = 1. \)

Nếu \(x \ne y \rightarrow\) Vì vai trò của \(x,y\) là bình đẳng nên giả sử \(x < y\)

\(\rightarrow x!+y!<2.y!≤(y+1).y!=(y+1)!<(x+y)!\)

Vì \(x \ne y \ne 1 => (x+y) \ne (y+1) \rightarrow (x+y)! \ne (y+1).\)

Vậy \((x,y) = {(1,1)}.\)

b, Chứng minh bằng phương pháp phản chứng:

Giả sử \(x^{17} + y^{17} = 19^{17} \) có nghiệm nguyên.

Không mất tổng quát, giả sử \(x < y\)

\(\rightarrow x^{17} < y^{17} ≤ 19^{17}\)

\(\rightarrow (y+1)^{17} ≤ 19^{17} \)

\(\rightarrow y^{17} + 17y^{16} = 19^{17}\)

Mà \(\rightarrow x > 17 \rightarrow x = y =18.\)

Thử lại không đúng, suy ra giả sử sai.

\(\rightarrow\) Không tồn tại số nguyên thỏa mãn.

8 tháng 5 2022

Ai không biết câu trl thì đừng có spam vô