Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
PT $\Leftrightarrow 4x^2-4xy+4y^2-16=0$
$\Leftrightarrow (2x-y)^2+3y^2=16$
$\Rightarrow 3y^2=16-(2x-y)^2\leq 16$
$\Rightarrow y^2\leq \frac{16}{3}< 9$
$\Rightarrow -3< y< 3$
Mà $y$ nguyên nên $y\in \left\{-2;-1;0;1;2\right\}$
Thay vô ta tìm được:
$(x,y)=(-2, -2), (0,-2), (0,2), (2,0), (-2,0)$
2.
PT $\Leftrightarrow 13y^2=20412$
$\Leftrightarrow y^2=\frac{20412}{13}\not\in\mathbb{N}$ (vô lý)
a, Khi \(x = 0 ⇔ 0! + y! = y! ⇔ \) Vô lý.
\(\rightarrow x \ne y\)\(\ne 0\)
Khi \(x = y \rightarrow 2 . x! = (2x)! \rightarrow 2x! = x(x+1)(x+2)...(2x)=>x(x+1)(x+2)...(2x) = 2 \rightarrow x = y = 1. \)
Nếu \(x \ne y \rightarrow\) Vì vai trò của \(x,y\) là bình đẳng nên giả sử \(x < y\)
\(\rightarrow x!+y!<2.y!≤(y+1).y!=(y+1)!<(x+y)!\)
Vì \(x \ne y \ne 1 => (x+y) \ne (y+1) \rightarrow (x+y)! \ne (y+1).\)
Vậy \((x,y) = {(1,1)}.\)
b, Chứng minh bằng phương pháp phản chứng:
Giả sử \(x^{17} + y^{17} = 19^{17} \) có nghiệm nguyên.
Không mất tổng quát, giả sử \(x < y\)
\(\rightarrow x^{17} < y^{17} ≤ 19^{17}\)
\(\rightarrow (y+1)^{17} ≤ 19^{17} \)
\(\rightarrow y^{17} + 17y^{16} = 19^{17}\)
Mà \(\rightarrow x > 17 \rightarrow x = y =18.\)
Thử lại không đúng, suy ra giả sử sai.
\(\rightarrow\) Không tồn tại số nguyên thỏa mãn.