Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(2xy^2+x+y+1-x^2-2y^2-xy=0\)
<=>\(\left(2xy^2-2y^2\right)+\left(y-xy\right)+\left(x-x^2\right)=-1\)
<=>\(2y^2\left(x-1\right)-y\left(x-1\right)-x\left(x-1\right)=-1\)
<=>\(\left(2y^2-y-x\right)\left(x-1\right)=-1\)
đến đây tự giải tiếp nha lắc
Tick nha
x2 = y3(y-1)(y+1)
=>x2 = y2y(y-1) (y+1)
y(y-1)(y+1) là tich 3 số liên tiếp và là số chính phương .
không có 3 số liên tiếp khác không là số chính phương
=> y =0 hoặc y =1 hoặc y =-1
=> x =0
Vậy (x;y) = (0;0);(0;1);(0;-1)
1.
PT $\Leftrightarrow 4x^2-4xy+4y^2-16=0$
$\Leftrightarrow (2x-y)^2+3y^2=16$
$\Rightarrow 3y^2=16-(2x-y)^2\leq 16$
$\Rightarrow y^2\leq \frac{16}{3}< 9$
$\Rightarrow -3< y< 3$
Mà $y$ nguyên nên $y\in \left\{-2;-1;0;1;2\right\}$
Thay vô ta tìm được:
$(x,y)=(-2, -2), (0,-2), (0,2), (2,0), (-2,0)$
2.
PT $\Leftrightarrow 13y^2=20412$
$\Leftrightarrow y^2=\frac{20412}{13}\not\in\mathbb{N}$ (vô lý)
cái đề câu 2 hình như sai pải ko bn