Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề còn gì nữa không bạn chớ chỉ vầy thì biết bao nhiêu nghiệm mà kể
Câu 1:
\(3x^2+2xy+5y^2=45\)
\(\Leftrightarrow 2x^2+(x^2+2xy+y^2)+4y^2=45\)
\(\Leftrightarrow 2x^2+(x+y)^2+4y^2=45\)
\(\Leftrightarrow 4y^2=45-2x^2-(x+y)^2\leq 45\)
\(\Rightarrow y^2\leq \frac{45}{4}< 16\Rightarrow -4< y< 4\)
Vì \(y\in\mathbb{Z}\Rightarrow y\in\left\{-3;-2;-1;0;1;2;3\right\}\)
Thay từng giá trị của $y$ vào PT ban đầu, cuối cùng ta có:
$y=-3$ thì $x=0$ hoặc $x=2$
$y=3$ thì $x=0$ hoặc $x=-2$
Vậy.........
Câu 2: Mình nghĩ phải thêm điều kiện $x,y,z$ dương
Câu 3:
PT \(\Leftrightarrow (x-2008)^2=[(y-1)(y+2)][y(y+1)]\)
\(\Leftrightarrow (x-2008)^2=(y^2+y-2)(y^2+y)\)
\(\Leftrightarrow (x-2008)^2=(y^2+y)^2-2(y^2+y)=(y^2+y-1)^2-1\)
\(\Leftrightarrow (y^2+y-1-x+2008)(y^2+y-1+x-2008)=1\)
\(\Leftrightarrow (y^2+y-x+2007)(y^2+y+x-2009)=1\)
Đến đây ta xét các TH:
\(\left\{\begin{matrix} y^2+y-x+2007=1\\ y^2+y+x-2009=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=2008\\ y=1; y=-2\end{matrix}\right.\)
\(\left\{\begin{matrix} y^2+y-x+2007=-1\\ y^2+y+x-2009=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=2008\\ y=0; y=-1\end{matrix}\right.\)
Vậy........
\(P=\left(6x-5y-16\right)^2+x^2+y^2+2xy+2x+2y+2\)
\(=\left(6x-5y-16\right)^2+\left(x+y\right)^2+2\left(x+y+1\right)\)
Dễ thấy \(\left(6x-5y-16\right)^2\ge0\) với mọi x,y
\(\left(x+y\right)^2\ge0\) với mọi x,y
=>GTNN của P là 2(x+y+1) (1)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}6x-5y-16=0\\x+y=0\end{cases}}< =>\hept{\begin{cases}6x-5y=16\\x=-y\end{cases}< =>\hept{\begin{cases}-6y-5y=16\\x=-y\end{cases}}}\)
\(< =>\hept{\begin{cases}-11y=16\\x=-y\end{cases}}< =>\hept{\begin{cases}y=-\frac{16}{11}\\x=\frac{16}{11}\end{cases}}\)
Thay x=16/11;y=-16/11 vào (1),ta tính đc GTNN của P=2 khi x=16/11;y=-16/11
Vậy................................
\(P=\left(6x-5y-16\right)^2+x^2+y^2+2xy+2x+2y+2\)
\(P=\left(6x-5y-16\right)^2+\left(x+y+1\right)^2+1\ge1\)
dấu bằng xảy ra khi \(\hept{\begin{cases}6x-5y-16=0\\x+y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}6x-5y=16\\x+y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
c.
(v+1)(1-2x)=-5