K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

Đề còn gì nữa không bạn chớ chỉ vầy thì biết bao nhiêu nghiệm mà kể

18 tháng 8 2016

tìm x , y nguyên.

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Câu 1:

\(3x^2+2xy+5y^2=45\)

\(\Leftrightarrow 2x^2+(x^2+2xy+y^2)+4y^2=45\)

\(\Leftrightarrow 2x^2+(x+y)^2+4y^2=45\)

\(\Leftrightarrow 4y^2=45-2x^2-(x+y)^2\leq 45\)

\(\Rightarrow y^2\leq \frac{45}{4}< 16\Rightarrow -4< y< 4\)

\(y\in\mathbb{Z}\Rightarrow y\in\left\{-3;-2;-1;0;1;2;3\right\}\)

Thay từng giá trị của $y$ vào PT ban đầu, cuối cùng ta có:

$y=-3$ thì $x=0$ hoặc $x=2$

$y=3$ thì $x=0$ hoặc $x=-2$

Vậy.........

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Câu 2: Mình nghĩ phải thêm điều kiện $x,y,z$ dương

Câu 3:

PT \(\Leftrightarrow (x-2008)^2=[(y-1)(y+2)][y(y+1)]\)

\(\Leftrightarrow (x-2008)^2=(y^2+y-2)(y^2+y)\)

\(\Leftrightarrow (x-2008)^2=(y^2+y)^2-2(y^2+y)=(y^2+y-1)^2-1\)

\(\Leftrightarrow (y^2+y-1-x+2008)(y^2+y-1+x-2008)=1\)

\(\Leftrightarrow (y^2+y-x+2007)(y^2+y+x-2009)=1\)

Đến đây ta xét các TH:

\(\left\{\begin{matrix} y^2+y-x+2007=1\\ y^2+y+x-2009=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=2008\\ y=1; y=-2\end{matrix}\right.\)

\(\left\{\begin{matrix} y^2+y-x+2007=-1\\ y^2+y+x-2009=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=2008\\ y=0; y=-1\end{matrix}\right.\)

Vậy........

16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

24 tháng 9 2017

cái đề câu 2 hình như sai pải ko bn

Đặt y=3-x, bài toán trở thành tìm min \(P=x^4+y^4+6x^2y^2\), trong đó x và y là các số thực thỏa mãn hệ \(\int^{x+y=3}_{x^2+y^2=5}\Rightarrow\int^{x^2+y^2+2xy=9}_{x^2+y^2\ge5}\)  \(\Rightarrow\left(x^2+y^2\right)+4\left(x^2+y^2+2xy\right)\ge5+4.9=41\)\(\Rightarrow5\left(x^2+y^2\right)+4\left(2xy\right)\ge41\)Lại có \(16\left(x^2+y^2\right)^2+25\left(2xy\right)^2\ge40\left(x^2+y^2\right)\left(2xy\right)\) (theo bất đẳng thức cosi) (1)Dấu bằng xảy ra...
Đọc tiếp

Đặt y=3-x, bài toán trở thành tìm min \(P=x^4+y^4+6x^2y^2\), trong đó x và y là các số thực thỏa mãn hệ \(\int^{x+y=3}_{x^2+y^2=5}\Rightarrow\int^{x^2+y^2+2xy=9}_{x^2+y^2\ge5}\)  \(\Rightarrow\left(x^2+y^2\right)+4\left(x^2+y^2+2xy\right)\ge5+4.9=41\)

\(\Rightarrow5\left(x^2+y^2\right)+4\left(2xy\right)\ge41\)

Lại có \(16\left(x^2+y^2\right)^2+25\left(2xy\right)^2\ge40\left(x^2+y^2\right)\left(2xy\right)\) (theo bất đẳng thức cosi) (1)

Dấu bằng xảy ra khi \(4\left(x^2+y^2\right)=5\left(2xy\right)\)

Cộng 2 vế của (1) với \(25\left(x^2+y^2\right)^2+16\left(2xy\right)^2\) ta có

\(41\left(\left(x^2+y^2\right)^2+\left(2xy\right)^2\right)\ge\left(5\left(x^2+y^2\right)+4\left(2xy\right)\right)^2\ge41^2\)

\(\Rightarrow\left(x^2+y^2\right)^2+\left(2xy\right)^2\ge41\Leftrightarrow x^4+y^4+6x^2y^2\ge41\)

Vậy min =41, dấu bằng xảy ra khi x=1 hoặc x=2

0
3 tháng 9 2016

\(P=\left(6x-5y-16\right)^2+x^2+y^2+2xy+2x+2y+2\)

\(=\left(6x-5y-16\right)^2+\left(x+y\right)^2+2\left(x+y+1\right)\)

Dễ thấy \(\left(6x-5y-16\right)^2\ge0\) với mọi x,y

            \(\left(x+y\right)^2\ge0\) với mọi x,y

=>GTNN của P là 2(x+y+1) (1)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}6x-5y-16=0\\x+y=0\end{cases}}< =>\hept{\begin{cases}6x-5y=16\\x=-y\end{cases}< =>\hept{\begin{cases}-6y-5y=16\\x=-y\end{cases}}}\)

\(< =>\hept{\begin{cases}-11y=16\\x=-y\end{cases}}< =>\hept{\begin{cases}y=-\frac{16}{11}\\x=\frac{16}{11}\end{cases}}\)

Thay x=16/11;y=-16/11 vào (1),ta tính đc GTNN của P=2 khi x=16/11;y=-16/11

Vậy................................

6 tháng 1 2017

\(P=\left(6x-5y-16\right)^2+x^2+y^2+2xy+2x+2y+2\)

\(P=\left(6x-5y-16\right)^2+\left(x+y+1\right)^2+1\ge1\)

dấu bằng xảy ra khi \(\hept{\begin{cases}6x-5y-16=0\\x+y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}6x-5y=16\\x+y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)