K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1

Ta chia các số từ 1 đến 96 thành các cặp:

(1, 4), (2,5), (3,6), (7,10), (8,11), (9,12), ..., (91, 94), (92, 95), (93, 96)

(Do \(96⋮6\) nên ta có thể chia theo quy luật trên)

 Có tất cả 48 cặp như thế. Do ta chọn 50 số khác nhau nên chắc chắn sẽ tìm được 2 số có hiệu bằng 3.

21 tháng 5 2020

ăn cứt

7 tháng 8 2015

Giả sử: các phần tử trong tập hợp A khác tất cả các phần tử trong tập hợp B

Mà A có 15 phần tử là các số nguyên dương không vượt quá 28

B có 14 phần tử là các số nguyên dương không vượt quá 28

=> có 15 + 14 = 29 phần tử khác nhau không và không vượt quá số 28. Điều này không đúng vì Từ 1 đến 28 có 28 số nguyên dương

Vậy có ít nhất 1 phân f tử thuộc A = 1 phần tử thuộc B

15 tháng 2 2019

Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một).Ta có : 
K1 = 2^(a1).3^(b1) 
K2 = 2^(a2).3^(b2) 
K3 = 2^(a3).3^(b3) 
K4 = 2^(a4).3^(b4) 
K5 = 2^(a5).3^(b5) 
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên) 
Xét 4 tập hợp sau : 
+ A là tập hợp các số có dạng 2^m.3^n (với m lẻ, n lẻ) 
+ B là tập hợp các số có dạng 2^m.3^n (với m lẻ, n chẵn) 
+ C là tập hợp các số có dạng 2^m.3^n (với m chẵn, n lẻ) 
+ D là tập hợp các số có dạng 2^m.3^n (với m chẵn, n chẵn) 
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj 
Ki = 2^(ai).3^(bi) và Kj = 2^(aj).3^(bj) ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) 
Vì Ki và Kj thuộc cùng 1 tập hợp ---> ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ ---> ai+aj và bi+bj đều chẵn ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) là số chính phương. 

18 tháng 11 2015

qua de tong tat ca cac so bang 200 thi se co mot so so co tong la 100

8 tháng 6

Để chứng minh rằng trong 100 số tự nhiên đã cho, chúng ta có thể tìm được một số các số sao cho tổng của chúng bằng 100, ta sẽ sử dụng nguyên lý Dirichlet và xem xét các tổng con của tập hợp các số này.

Gọi \( S \) là tập hợp gồm 100 số tự nhiên khác 0 không vượt quá 100. Giả sử các số trong tập \( S \) là \( a_1, a_2, \ldots, a_{100} \). Tổng của 100 số này là 200, nghĩa là:
\[ a_1 + a_2 + \cdots + a_{100} = 200. \]

Xét tất cả các tổng con của tập hợp \( S \), nghĩa là xét tất cả các tổng con có dạng:
\[ a_{i_1} + a_{i_2} + \cdots + a_{i_k}, \]
với \( 1 \leq i_1 < i_2 < \cdots < i_k \leq 100 \).

Có tất cả \( 2^{100} \) tổng con khác nhau (bao gồm cả tổng con rỗng là 0). Ta sẽ sử dụng nguyên lý Dirichlet để tìm ra tổng con bằng 100.

Chia các tổng con thành hai loại:
1. Các tổng con nhỏ hơn hoặc bằng 100.
2. Các tổng con lớn hơn 100 nhưng nhỏ hơn hoặc bằng 200.

Nếu có một tổng con nào đó bằng 100, ta đã hoàn thành chứng minh. 

Giả sử ngược lại không có tổng con nào bằng 100. Khi đó, mỗi tổng con đều là duy nhất và nằm trong khoảng từ 0 đến 200.

Xét hai tổng con bất kỳ \( T_1 \) và \( T_2 \) mà \( T_1 < T_2 \). Do tổng toàn bộ các số là 200, ta có:
\[ T_2 - T_1 \leq 200. \]
Nếu không có tổng con nào bằng 100, ta xét các hiệu:
\[ T - (T - 100) = 100, \]
với \( T \) là tổng của tất cả các phần tử. Nếu tồn tại hai tổng con \( T_1 \) và \( T_2 \) sao cho \( T_1 < T_2 \) và \( T_2 - T_1 = 100 \), thì hiệu này sẽ cho chúng ta tổng bằng 100. Vì tổng các số là 200 nên hiệu giữa hai tổng con \( T_2 \) và \( T_1 \) phải tồn tại và bằng 100.

Như vậy, theo nguyên lý Dirichlet và sự ràng buộc của tổng 200, chắc chắn tồn tại một tổng con bằng 100 trong tập hợp các số này. 

Đây là điều cần chứng minh.

8 tháng 10 2017

* Ta thấy 4 = 1.4 = (-1).(-4) = 2.2 = (-2).(-2) 
như vậy các số (trong 11 số cần tìm chỉ có thể lấy từ những cặp tương ứng như trên), và xếp xen kẻ nhau: chẳn hạn 1,4,1,4... 
mặt khác, giả sử ta chọn số a1 làm mốc, thì do có 11 số (số lẻ) nên số a11 = a1 
do xếp vòng tròn nên vẫn phải có a11.a1 = 4 => a1.a1 = 4 => a1 = -2 hoặc a1 = 2 
Vậy 11 số nguyên phải bằng nhau và bằng -2 hoặc đều bằng 2 
* Nếu có 10 số, thì chọn thêm được 2 cặp 1,4 hoặc -1,-4 
khi đó có 4 đáp số là: 
* các số đều bằng -2 
* các số đều bằng 2 
* 5 số bằng -1, 5 số bằng -4 xếp xen kẻ nhau 
* 5 số bằng 1, 5 số bằng 4 xếp xen kẻ nhau 
---------- 

9 tháng 10 2017

bn có đọc đề bài ko vậy Be xiu sai bét luôn

4 tháng 1 2018

Cho mình hỏi mấy câu nữa:
Câu 1: Cho 1994 số, mỗi số bằng 1 hoặc -1. Hỏi có thể chọn ra từ 1994 số đó một số số sao cho tổng các số được chọn ra bằng tổng các số còn lại hay không?
Câu 2: So sánh
a) (-2)^91 và (-5)^35
b) (-5)^91 và (-11)^59
c) (-80)^11 và (-27)^15
d) (-31)^10 và (-17)^13
Câu 3: Cho tổng: 1+2+3+....+10. Xóa hai số bất kì, thay bằng hiệu của chúng. Cứ tiếp tục làm như vậy nhiều lần. Có khi nào kết quả nhận được bằng -1; bằng -2; bằng 0 được không?