K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

Có: \(\frac{1}{ab}+\frac{1}{cd}\ge\frac{4}{ab+cd}=\frac{8}{a^2+b^2+c^2+d^2}.\)

Cần CM: \(\frac{8}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{2}\)

hay: \(\left(a^2+b^2+c^2+d^2\right)^2\ge16\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge4\)

CM Bđt phụ sau: \(a^2+b^2+c^2+d^2\ge\frac{\left(a+b+c+d\right)^2}{4}\)

Thật vậy: \(4\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(c-d\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2\ge0\)(đúng)

.................

11 tháng 6 2019

Lê Nhật Khôi cách này lúc đầu em cũng tính làm như nó ngược dấu rồi thì phải:

\(\frac{8}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{2}\)

\(\Leftrightarrow\frac{16}{2\left(a^2+b^2+c^2+d^2\right)}\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(a^2+b^2+c^2+d^2\right)}\)

\(\Leftrightarrow\left(a^2+b^2+c^2+d^2\right)^2\le16\) thế này mới đúng chứ?

_ tth_

3 tháng 3 2017

                  \(a+b+c=3\)

              So \(\frac{1}{a2}\)

16 tháng 2 2020

Svacxo chăng :33 Ai thử đi, e sợ biến nhiều lắm :))

8 tháng 2 2018

ta có ab(   a\(^2\)+b\(^2\))\(\le\)2( tự CM)

=> ( a\(^2\)+ b\(^2\))\(\le\)2/ab

=> ( a\(^2\)+ b\(^2\))/2\(\le\)1/ab

làm tương tự ta có ( c\(^2\)+d\(^2\))/2\(\le\)1/cd

cộng vế tương ứng vế. Hết.

mình dùng tv ₫ể viết, có một Số chỗ hơi "khắm". Xin thứ lỗi.

8 tháng 2 2018

Bạn Huy Le ơi, cho mik hỏi tại sao ab(a^2+b^2)<=2 vậy

Bạn bảotự chứng minh được à, tại saolại như thế vậy ??!!

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

11 tháng 9 2016

Ta có : \(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{2}{3}\)

\(\Leftrightarrow3\left(a+b+c+d\right)^2\ge8\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu được chứng minh

10 tháng 7 2017

Áp dụng BĐT cauchy-schwarz :

\(VT=\frac{a^4}{ab+ac+ad}+\frac{b^4}{ab+bc+bd}+\frac{c^4}{cd+ac+bc}+\frac{d^4}{ad+bd+cd}\)

\(\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\)

Mà \(3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)( dễ dàng chứng minh nó bằng AM-GM)

nên \(VT\ge\frac{a^2+b^2+c^2+d^2}{3}\)

Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd;d^2+a^2\ge2ad\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1\)

do đó \(VT\ge\frac{1}{3}\)

Dấu''='' xảy ra khi \(a=b=c=d=\frac{1}{2}\)