Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức chia x-1 có ngiệm là 1 nên:
Thay x=1 vào đa thức chia ta có:
130+14-11975+1
=1+1-1+1
=2
Vậy số dư khi chia khi chia x30+x4-x1975+1 cho x-1 là 2
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}=\frac{\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)+5\left(x+2\right)}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\Rightarrow a=-2;b=5\)
\(\Rightarrow\)\(a+b=-2+5=3\)
Evaluate the expression at
x3 + 12x + 48x + 64
= (x + 4)2
= (- 4 + 4)2
= 02
= 0
Fill in the blank: ............
x3 - a = (x - 2)(x2 + 2x + 4)
x3 - a = x3 - 8
a = 8
Fill in the blank: (x - 1)3 = x3 - 3x2 + 3x - 1 Fill in the blank: (x + 1)3 = x3 + 3x2 + 3x + 1Evaluate , given and .
Answer:
a + b = 8
(a + b)2 = 82
a2 + b2 + 2ab = 64
a2 + b2 + 2 . 10 = 64
a2 + b2 + 20 = 64
a2 + b2 = 64 - 20
a2 + b2 = 44
(a - b)2
= a2 - 2ab + b2
= 44 - 2 . 10
= 44 - 20
= 24
Given .
Evaluate A at .
Answer: A
A = (x - 5)(x2 + 5x + 25) - x2(x + 3) + 3x2
= x3 - 125 - x3 - 3x2 + 3x2
= - 125
Given .
Evaluate A at .
Answer: A
Answer: . Given and . Evaluate .Answer: a - b = 5(a - b)2 = 52a2 - 2ab + b2 = 25a2 + b2 - 2 . 4 = 25a2 + b2 - 8 = 25a2 + b2 = 25 + 8a2 + b2 = 33a3 - b3 = (a - b)(a2 + ab + b2) = 5 . (33 + 4)= 5 . 37= 185
Given and . Evaluate .
Answer: a + b = 5(a + b)2 = 52a2 + 2ab + b2 = 25a2 + b2 + 2 . 4 = 25a2 + b2 + 8 = 25a2 + b2 = 25 - 8a2 + b2 = 17a3 + b3= (a + b)(a2 - ab + b2)= 5 . (17 - 4)= 5 . 13= 65
giải
Ta có : \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
Với \(a-b=8\)và \(ab=10\)
\(\Rightarrow\left(a+b\right)^2=8^2+4\times10\)
\(=104\)
\(1.VP\)
\(\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)
\(=a^2+b^2=VT\left(DPCM\right)\)
1/ (a + b)2 - 2ab = a2 + 2ab + b2 - 2ab = a2 + b2 + (2ab - 2ab) = a2 + b2
2/ (a2 + b2)2 - 2a2b2 = a4 + 2a2b2 + b4 - 2a2b2 = a4 + b4 + (2a2b2 - 2a2b2) = a4 + b4
x^2-y^2=2=(x-y).(x+y)
ta co bang
x-y 1 2 -1 -2
y+x 2 1 -2 -1
x 1.5 -1.5
y 0.5 -0.5
\(x^2-1=\left(x+1\right)\left(x-1\right)\)
\(f\left(x\right)=x^4+ax^3+bf\left(x\right)=x^4+ax^3+b\)
Theo định lí Bezout, ta có :
\(f\left(1\right)=1+ax^3+b=0=>a+b=-1\)
\(f\left(-1\right)=1-a+b=0=>-a+b=-1\)
Giải hệ phương trình, ta có:
a+b=-1
-a+b=-1
=> a=0;b=-1
=>a+b=-1
mk nghĩ là -1
Cảm ơn bn