K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

mình ko bít tiếng anh bn dịch hộ mình đi

10 tháng 7 2016

khó oa bạn

13 tháng 12 2017

Giả sử f (x) là một đa thức của x.Nếu f (x) có 3 phần còn lại khi chia cho 2 (x-1) và 2f (x) có phần còn lại của -4 khi chia cho 3 ( x + 2) .Vì khi 3f (x) được chia cho 4 ( x 2 + x - 2 x2 + x-2), phần còn lại là ax + b, trong đó a và b là hằng số. Sau đó a + b = ...............

13 tháng 12 2017

ai biết giúp nha

Lesson 1: analyzing the polynomial factors.Notes + 2 x-1x 3 + 6x2 + 11x + 6x 4 + 2 x 2-3AB + ac + b2 + 2bc + c2A3-b3 + c3 + 3abcLesson 2: for functions: search conditions of x to A means.A shortening.Computer x to A < 1.Post 3: prove the inequality:For a + b + c = 0. Prove that: a3 + b3 + c3 = 3abc.For a, b, c are the sidelengths of the triangle. Proof that:Prove that x 5 + y5 ≥ x4y + xy4 with x, y ≠ 0 and x + y ≥ 0Lesson 4: solve the equation:x 2-3 x + 2 + | x-1 | = 0Lesson 5: find the...
Đọc tiếp

Lesson 1: analyzing the polynomial factors.

Notes + 2 x-1
x 3 + 6x2 + 11x + 6
x 4 + 2 x 2-3
AB + ac + b2 + 2bc + c2
A3-b3 + c3 + 3abc
Lesson 2: for functions: 

search conditions of x to A means.
A shortening.
Computer x to A < 1.
Post 3: prove the inequality:

For a + b + c = 0. Prove that: a3 + b3 + c3 = 3abc.
For a, b, c are the sidelengths of the triangle. Proof that:


Prove that x 5 + y5 ≥ x4y + xy4 with x, y ≠ 0 and x + y ≥ 0
Lesson 4: solve the equation:

x 2-3 x + 2 + | x-1 | = 0


Lesson 5: find the largest and smallest value (if any)

A = x 2-2 x + 5
B =-2 x 2-4 x + 1.
C = 
Lesson 6: calculate the value of expression.

Know a – b = 7 feature: A = (a + 1) a2-b2 (b-1) + ab-3ab (a-b + 1)
For three numbers a, b, c is not zero catches up deals for equality: 
Computer: P = 

Article 7: proof that

8351634 + 8241142 divisible 26.
A = n3 + 6n2-19n-24 divisible by 6.
B = (10n-9n-1) divisible 27 with n in N *.
Article 8:

In the motorcycle race three cars depart at once. The second car in a one-hour run slower than the first car 15 km and 3 km third cars. rapidly should the destination more slowly the first car 12 minutes and the third car earlier today. No stops along the way. Calculate the speed of each car, race distance and the time each car

0
6 tháng 3 2017

Ta có: \(pq+q=13+q^2\Leftrightarrow q\left(p+1\right)=13+q^2\)

\(q^2⋮q\Leftrightarrow13⋮q\Leftrightarrow\left[{}\begin{matrix}q=1\\q=13\end{matrix}\right.\)

Nếu q =1 thì:\(p+1=14\Leftrightarrow p=13\)

\(\Rightarrow pq=13\left(cm^2\right)\)(1)

Nếu q=13 thì:\(13p+13=182\Leftrightarrow p=13\)

\(\Rightarrow pq=169\left(cm^2\right)\)(2)

Từ (1)(2) ta có: \(max\left(pq\right)=169\left(cm^2\right)\)

Bạn xem hộ mình sai ở đâu k

6 tháng 3 2017

câu 2 thì dựa vào đây nhưng chưa đầy đủ đâu bạn làm nốt nhé https://hoc24.vn/hoi-dap/question/197024.html?pos=675443

Bài thi số 3 19:25 Câu 1: A man drove a car from A to B at speed 60km/h. After arriving B, he took a rest for 30 minutes then turned back to A at speed 40km/h. Known that he started from A at 7:00 am and he reached A again at 3:15pm on the same day. The distance between A and B is km. Câu 2: The minimum of the expression is Câu 3: Given that is a positive integer such that and are perfect squares. The sum of such integers is Câu 4: Given two triangles ...
Đọc tiếp
Bài thi số 3

19:25 Câu 1:
A man drove a car from A to B at speed 60km/h. After arriving B, he took a rest for 30 minutes then turned back to A at speed 40km/h. Known that he started from A at 7:00 am and he reached A again at 3:15pm on the same day. The distance between A and B is km. Câu 2:
The minimum of the expression is Câu 3:
Given that is a positive integer such that and are perfect squares.
The sum of such integers is Câu 4:
Given two triangles and . Known that , and .
If then Câu 5:
How many real numbers are there such that ?
Answer: There are numbers . Câu 6:
The operation on two numbers produces a number equal to their sum minus 2.The value of is Câu 7:
ABC is a triangle. AM is the bisector of angle CAB. Given that AM = 4cm, AB = 6m and AC = 12cm.Then the measurement of angle BAC is degrees. Câu 8:
In the equation above, where is a constant.The greatest possible value of such that the equation has at least one solution is Câu 9:
and are positive integers such that , where is a prime number.
The number of pairs is Câu 10:
Given that .
Calculate:
=
(Input the answer as a decimal in its simplest form) Nộp bài
7
10 tháng 4 2017

câu 7 mk bấm nhầm đáp án là 120

qua B kẻ đường thẳng song song với AM cắt AC ở N.

vì AM là phân giác góc BAC nên có :

\(\dfrac{AC}{AB}=\dfrac{CM}{BM}=\dfrac{12}{6}=2\) suy ra \(\dfrac{CM}{BC}=\dfrac{CM}{CM+BM}=\dfrac{12}{12+6}=\dfrac{2}{3}\)

vì AM song song với BN nên có :

1,\(\dfrac{CA}{AN}=\dfrac{CM}{BM}=\dfrac{12}{AN}=2\) suy ra AN=6

2,\(\dfrac{AM}{BN}=\dfrac{CM}{BC}=\dfrac{2}{3}=\dfrac{4}{BN}\)suy ra BN=6

vì AB=6 nên tam giác ABN đều

suy ra \(\widehat{NAB}\)=\(60^0\)

\(\widehat{NAB}+\widehat{BAC}=\)\(180^0\)

nên \(\widehat{BAC}=\)\(120^0\)

7 tháng 4 2017

bài này bữa mình thi có 50đ à hehe

19 tháng 3 2017

?????????????????????????????????????????????? Are you learning English or Math? I'm sure you are're mistake of English

19 tháng 3 2017

:v