Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2.\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3.\left(-6\right).1=19\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=13.19-\left(-6\right)^2.1=211\)
b) \(x^2+y^2=\left(x-y\right)^2+2xy=1^1+2.6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+3.6.1=19\)
\(x^5-y^5=\left(x^2+y^2\right)\left(x^3-y^3\right)+x^2y^2\left(x-y\right)=13.19+6^2.1=283\)
\(x^2+x^2+y^2+\frac{1}{x^2}\ge4\sqrt[4]{x^2y^2}\)
\(\Rightarrow4\sqrt[4]{x^2y^2}\le4\Rightarrow\sqrt[4]{x^2y^2}\le1\Rightarrow x^2y^2\le1\)
\(\Rightarrow-1\le xy\le1\)
\(P_{max}=1\) khi \(\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)
\(P_{min}=-1\) khi \(\left(x;y\right)=\left(1;-1\right);\left(-1;1\right)\)
a, Ta có :
\(N=x^2\left(y-1\right)-5x\left(1-y\right)=x^2\left(y-1\right)+5x\left(y-1\right)=x\left(x+5\right)\left(y-1\right)\)
Thay x = -20 ; y = 1001 ta được :
\(-20\left(-20+5\right)\left(1001-1\right)=-20.\left(-15\right).1000=300000\)
b, Ta có : \(x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y=\left(x-y\right)^3+xy\left(x-y\right)\)
\(=\left(x-y\right)^4\left(1+xy\right)\)
Thay x - y = 7 ; xy = 9 ta được :
\(7^4.\left(1+9\right)=2401.10=24010\)
N = x2( y - 1 ) - 5x( 1 - y )
= x2( y - 1 ) + 5x( y - 1 )
= x( y - 1 )( x + 5 )
Tại x = -20 ; y = 1001 ta được :
N = -20( 1001 - 1 )( -20 + 5 )
= -20.1000.(-15)
= 1000.300
= 300 000
Q = x( x - y )2 - y( x - y )2 + xy2 - x2y
= x( x - y )2 - y( x - y )2 - xy( x - y )
= ( x - y )[ x( x - y ) - y( x - y ) - xy ]
= ( x - y )( x2 - xy - xy + y2 - xy )
= ( x - y )( x2 - 3xy + y2 )
= ( x - y )[ ( x2 - 2xy + y2 ) + 2xy - 3xy ]
= ( x - y )[ ( x - y )2 - xy ]
= 7[ 72 - 9 ]
= 7( 49 - 9 )
= 7.40 = 280
\(x^2+y^2+1\ge xy+x+y\)
\(\Leftrightarrow2\left(x^2+y^2+1\right)\ge2\left(xy+x+y\right)\)(sử dụng phép biến đổi tương đương và nhân 2 vào 2 vế của bất phương trình)
\(\Leftrightarrow2x^2+2y^2+2-2xy-2x-2y\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\)
BĐT đúng vì bình phương 1 số luôn lớn hơn hoặc bằng 0
\(\RightarrowĐPCM\)
Dấu "=" xảy ra khi x = y = 1