K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 11 2023

Lời giải:

$x+y+z=0\Rightarrow x+y=-z$. Khi đó:

$x^2+y^2-z^2=(x+y)^2-2xy-z^2=(-z)^2-2xy-z^2=-2xy$

Tương tự: $y^2+z^2-x^2=-2yz, z^2+x^2-y^2=-2xz$

Khi đó:

$A=\frac{xy}{-2xy}+\frac{yz}{-2yz}+\frac{zx}{-2zx}=\frac{1}{-2}+\frac{1}{-2}+\frac{1}{-2}=\frac{-3}{2}$

1 tháng 10 2023

Cậu ơi bài trên đâu có liên quan tới bài dưới. Mong cậu chụp thêm dữ kiện đề bài để mn giải cho nhé!

1 tháng 10 2023

cho mik xl các bn ạ 

29 tháng 9 2023

Bài 1

loading... a) Do AM là đường trung tuyến của ∆ABC

⇒ M là trung điểm BC

Do MA = MD (gt)

⇒ M là trung điểm AD

Tứ giác ABDC có:

M là trung điểm BC (cmt)

M là trung điểm AD (cmt)

⇒ ABDC là hình bình hành

Mà ∠BAC = 90⁰ (gt)

⇒ ABDC là hình chữ nhật

b) ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10 (cm)

Do AM là đường trung tuyến ứng với cạnh huyền BC của ∆ABC

⇒ AM = BC : 2

= 10 : 2

= 5 (cm)

c) Nếu ∠B = 45⁰

⇒ C = 90⁰ - ∠B

= 90⁰ - 45⁰

= 45⁰

⇒ ∆ABC vuông cân tại A

⇒ AB = AC

Lại có ABDC là hình chữ nhật

⇒ ABDC là hình vuông

29 tháng 9 2023

Bài 2

loading...a) Do H và E đối xứng với nhau qua G (gt)

⇒ G là trung điểm của HE

Tứ giác MEKH có:

G là trung điểm HE (cmt)

G là trung điểm MK (gt)

⇒ MEKH là hình bình hành

Mà ∠MHK = 90⁰ (MH ⊥ IK)

⇒ MEKH là hình chữ nhật

b) ∆MHK có:

N là trung điểm MH (gt)

G là trung điểm MK (gt)

⇒ NG là đường trung bình của ∆MHK

⇒ NG // HK và NG = HK : 2

Do D là trung điểm HK

⇒ HD = HK : 2

⇒ HD = NG = HK : 2

Do NG // HK

⇒ NG // HD

Do ∠MHK = 90⁰

⇒ ∠NHD = 90⁰

Tứ giác NGDH có:

NG // HD (cmt)

NG = HD (cmt)

⇒ NGDH là hình bình hành

Mà ∠NHD = 90⁰ (cmt)

⇒ NGDH là hình chữ nhật

28 tháng 9 2023

loading... a) Do ∆ABC cân tại A có AH là đường cao

⇒ AH cũng là đường trung tuyến của ∆ABC

⇒ H là trung điểm của BC

Lại có HD = HA (gt)

⇒ H là trung điểm của AD

Ta có:

AH ⊥ BC

⇒ AD ⊥ BC

Xét tứ giác ABDC có:

H là trung điểm của BC (cmt)

H là trung điểm của AD (cmt)

⇒ ABDC là hình bình hành

Mà AD ⊥ BC (cmt)

⇒ ABDC là hình thoi

b) Do H là trung điểm của BC (cmt)

⇒ BH = BC : 2 = 6 : 2 = 3 (cm)

∆ABH vuông tại H (do AH ⊥ BC)

⇒ AB² = AH² + BH² (Pytago)

⇒ AH² = AB² - BH²

= 5² - 3²

= 16

⇒ AH = 4 (cm)

⇒ AD = AH = 4 (cm)

c) Tứ giác AHCF có:

E là trung điểm AC (gt)

E là trung điểm FH (gt)

⇒ AHCF là hình bình hành

Mà ∠AHC = 90⁰ (AH ⊥ BC)

⇒ AHCF là hình chữ nhật

⇒ AF ⊥ AH và FC ⊥ CH

d) Do ABDC là hình thoi (cmt)

⇒ ∠BAC = ∠BDC = 60⁰

Ta có:

∠BAC + ∠BDC + ∠ABD + ∠ACD = 360⁰ (tổng các góc của hình thoi ABDC)

⇒ ∠ABD + ∠ACD = 360⁰ - (∠BAC + ∠BDC)

= 360⁰ - (60⁰ + 60⁰)

= 360⁰ - 120⁰

= 240⁰

Mà ∠ABD = ∠ACD (hai góc đối của hình thoi ABDC)

⇒ ∠ABD = ∠ACD = 240⁰ : 2 = 120⁰

Vậy các góc của hình thoi ABDC lần lượt là:

∠BAC = ∠BDC = 60⁰

∠ABD = ∠ACD = 120⁰

15 tháng 8 2021

bạn xóa dữ liệu duyệt web thử xem sao

15 tháng 8 2021

là sao ???

31 tháng 10 2021

a: Xét ΔBAC có 

D là trung điểm của AB

M là trung điểm của AC

Do đó: DM là đường trung bình của ΔABC

Suy ra: DM//BC và \(DM=\dfrac{BC}{2}=3.5\left(cm\right)\)

29 tháng 9 2023

loading...  

a) Do AM là đường trung tuyến của ∆ABC

⇒ M là trung điểm BC

Do MA = MD (gt)

⇒ M là trung điểm AD

Tứ giác ABDC có:

M là trung điểm BC (cmt)

M là trung điểm AD (cmt)

⇒ ABDC là hình bình hành

Mà ∠BAC = 90⁰ (gt)

⇒ ABDC là hình chữ nhật

b) ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10 (cm)

Do AM là đường trung tuyến ứng với cạnh huyền BC của ∆ABC

⇒ AM = BC : 2

= 10 : 2

= 5 (cm)

c) Nếu ∠B = 45⁰

⇒ C = 90⁰ - ∠B

= 90⁰ - 45⁰

= 45⁰

⇒ ∆ABC vuông cân tại A

⇒ AB = AC

Lại có ABDC là hình chữ nhật

⇒ ABDC là hình vuông

16 tháng 11 2023

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét tứ giác ABDC có

H là trung điểm chung của AD và BC

nên ABDC là hình bình hành

Hình bình hành ABDC có AB=AC

nên ABDC là hình thoi

b: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=3\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-3^2=16\)

=>AH=4(cm)

AD=2*AH

=>AD=2*4=8(cm)

c: 

Xét tứ giác AHCF có

E là trung điểm chung của AC và HF

nên AHCF là hình bình hành

Hình bình hành AHCF có \(\widehat{AHC}=90^0\)

nên AHCF là hình chữ nhật

=>AH\(\perp\)AF và HC\(\perp\)FC

d: ABDC là hình thoi

=>\(\widehat{BAC}=\widehat{BDC}=60^0\)

ABDC là hình thoi

=>\(\widehat{ABD}+\widehat{BAC}=180^0\)

=>\(\widehat{ABD}=120^0\)

ABDC là hình thoi

=>\(\widehat{ABD}=\widehat{ACD}=120^0\)