Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{10\cdot9}{\sqrt{10}}-2\cdot5+1+2021=9\sqrt{10}-10+2022=9\sqrt{10}+2012\)
Lời giải:
Nếu $x+y+z+t=0$ thì $M=\frac{-t}{t}=\frac{-x}{x}=\frac{-z}{z}=-1$
$\Rightarrow (M-1)^{2025}=(-1-1)^{2025}=(-2)^{2025}$
Nếu $x+y+z+t\neq 0$. Áp dụng TCDTSBN:
$M=\frac{x+y+z}{t}=\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z+y+z+t+z+t+x+t+x+y}{t+x+y+z}=\frac{3(x+y+z+t)}{x+y+z+t}=3$
$\Rightarrow (M-1)^{2025}=2^{2025}$
A= 3/4 +2/5-7/5+5/4
= (3/4 + 5/4) + (2/5-7/5)
= 2 + (-1)
= 1
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b-c}{6+4-5}=\dfrac{40}{5}=8\)
Do đó: a=48; b=32; c=40
Gọi số sách 7A,7B,7C ll là a,b,c(a,b,c∈N*)
Áp dụng tc dtsbn:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b-c}{6+4-5}=\dfrac{40}{5}=8\\ \Leftrightarrow\left\{{}\begin{matrix}a=48\\b=32\\c=40\end{matrix}\right.\)
Vậy ...
\(=\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{5}{41}+\dfrac{36}{41}\right)=1-1=0\)
a) Xét ΔMNI và ΔMPI có
MN=MP(do ΔMNP cân tại M)
NI=PI(do I là trung điểm của NP)
MI là cạnh chung
Do đó: ΔMNI=ΔMPI(c-c-c)
b) Vì ΔMNI = ΔMPI nên
=> MI là tia phân giác góc NMP(cmt)
c)ta có:
+)MI là tia phân giác góc NMP(cmt)
+)MI kề bù với NPI(gt)
=>MI vuông góc với NP
vậy A) ΔMNI=ΔMPI
B)MI là tia phân giác góc NMP
C)MI vuông góc với NP
f(2)=2\(^2\)+5
f(2)=9
cảm ơn cậu nhiều ạ