Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) DK : x > 0; x khác 1
\(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1\)
c ) \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)
<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)
TH1: Q = 0 => x = 0 loại
TH2: Q khác 0
(1) là phương trình bậc 2 với tham số Q ẩn x.
(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)
<=> \(-3Q^2+4Q+4\ge0\)
<=> \(-\frac{2}{3}\le Q\le2\)
Vì Q nguyên và khác 0 nên Q = 1 hoặc Q = 2
Với Q = 1 => \(x-3\sqrt{x}+1=0\)
<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x
Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.
Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.
`a)(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4,x ne 9)`
`=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`
`=(2sqrtx-9+(sqrtx-3)(sqrtx+3)+(2sqrtx+1)(sqrtx-2))/(x-5sqrtx+6)`
`=(2sqrtx-9+x-9+2x-3sqrtx-2)/(x-5sqrtx+6)`
`=(3x-sqrtx-20)/
\(A=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}×\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{1}{\sqrt{x}+2}\)
A đạt GTLN khi \(2+\sqrt{x}\)đạt GTNN hay x là nhỏ nhất. Vậy A đạt GTLN là \(\frac{1}{2}\)khi x = 0
ĐK:\(\sqrt{x+2\sqrt{x-1}}=\sqrt{x-1+2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\left|\sqrt{x-1}+1\right|\)
Suy ra : ĐK là x -1>0 suy ra x>1
Trường hợp mẫu số của phân thức 2 cũng tương tự tìm được ĐK x>1
Ta có \(M=\frac{1}{\sqrt{x-1}+1}-\frac{1}{\sqrt{x-1}-1}\)
\(M=\frac{\sqrt{x-1}-1-\sqrt{x-1}-1}{\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}-1\right)}\)
\(M=\frac{-2}{x-1-1}=\frac{-2}{x-2}\)
Tới đây rồi thì tìm giá trị nguyên thì giống với lớp 6,7 đó tự tìm thì chắc ai cũng tìm được
\(a,ĐK:\hept{\begin{cases}x\ge0\\\sqrt{x}+2\ne0\\\sqrt{x}-2\ne0;4-x\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
Rút gọn :
\(A=\frac{4}{\sqrt{x}+2}+\frac{2}{\sqrt{x}-2}+\frac{5\sqrt{x}-6}{4-x}\)
\(A=\frac{4}{\sqrt{x}+2}+\frac{2}{\sqrt{x}-2}-\frac{5\sqrt{x}-6}{x-4}\)
\(A=\frac{4\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{4\sqrt{x}-8+2\sqrt{x}+4-5\sqrt{x}+6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{1}{\sqrt{x}-2}\)
\(b,\)Để A nhận giá tri nguyên \(\Leftrightarrow\frac{1}{\sqrt{x}-2}\) nguyên
\(\Leftrightarrow\sqrt{x}-2\inƯ\left(1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=1\\\sqrt{x}-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=3\\\sqrt{x}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=9\\x=1\end{cases}}}\)
Vậy A có giá tri nguyên \(\Leftrightarrow x\in\left\{1;9\right\}\)